1
|
Mallétroit J, Djian A, Nakatani K, Xie J, Métivier R, Laurent G. Complete kinetic and photochemical characterization of the multi-step photochromic reaction of donor-acceptor Stenhouse adducts. Phys Chem Chem Phys 2025; 27:1320-1326. [PMID: 39376197 DOI: 10.1039/d4cp02267j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Donor-acceptor Stenhouse adducts (DASA) are negative photochromic compounds exhibiting a multi-step photoisomerization mechanism. Previous studies have described a first photoactivated step, followed by a thermally controlled one. This study emphasizes the key role of the intermediate species, using high-rate acquisition photokinetic absorption spectroscopy. We have investigated the multi-step processes at different temperatures and irradiation power values. For the first time, we have combined our experimental setup with a three-species photokinetic model to determine the kinetic constants and quantum yields of each step of a DASA compound. Finally, we have identified the key role of the intermediate species, showing that double irradiation experiments allow the tuning of the photochromic reaction.
Collapse
Affiliation(s)
- Julien Mallétroit
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, University Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France.
| | - Aurélie Djian
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, University Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France.
| | - Keitaro Nakatani
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, University Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France.
| | - Juan Xie
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, University Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France.
| | - Rémi Métivier
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, University Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France.
| | - Guillaume Laurent
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, University Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France.
| |
Collapse
|
2
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
3
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
4
|
Peñín B, Sanosa N, Sampedro D, Funes-Ardoiz I. Mechanism of the Aza-Piancatelli Reaction: Scope and Limitations of Furan Substitution in Donor-Acceptor Stenhouse Adduct Synthesis. ACS OMEGA 2022; 7:22811-22817. [PMID: 35811875 PMCID: PMC9261078 DOI: 10.1021/acsomega.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The aza-Piancatelli reaction has been widely used to synthesize donor-acceptor Stenhouse adducts (DASAs), a new class of molecular photoswitches with unique properties. However, the substitution pattern of furan cores has been limited to position 3, as 3,4-disubstituted furans remain unreactive. Herein, we explore the aza-Piancatelli reaction mechanism using density functional theory (DFT) calculations to understand the influence of the different substituents on the reactivity. We found that all the reaction pathways are kinetically accessible, but the driving force of the reaction is lost in disubstituted furans due to the loss of conjugation in the DASA products. Finally, a simple model is proposed to guide the design of synthetic routes using this reaction.
Collapse
|
5
|
A multi-stage single photochrome system for controlled photoswitching responses. Nat Chem 2022; 14:942-948. [PMID: 35681046 DOI: 10.1038/s41557-022-00947-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
The ability of molecular photoswitches to convert on/off responses into large macroscale property change is fundamental to light-responsive materials. However, moving beyond simple binary responses necessitates the introduction of new elements that control the chemistry of the photoswitching process at the molecular scale. To achieve this goal, we designed, synthesized and developed a single photochrome, based on a modified donor-acceptor Stenhouse adduct (DASA), capable of independently addressing multiple molecular states. The multi-stage photoswitch enables complex switching phenomena. To demonstrate this, we show spatial control of the transformation of a three-stage photoswitch by tuning the population of intermediates along the multi-step reaction pathway of the DASAs without interfering with either the first or final stage. This allows for a photonic three-stage logic gate where the secondary wavelength solely negates the input of the primary wavelength. These results provide a new strategy to move beyond traditional on/off binary photochromic systems and enable the design of future molecular logic systems.
Collapse
|
6
|
Sanchez DM, Raucci U, Martínez TJ. In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor-Acceptor Stenhouse Adducts. J Am Chem Soc 2021; 143:20015-20021. [PMID: 34761899 DOI: 10.1021/jacs.1c06648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on first-principles molecular dynamics to discover and refine the switching mechanism of donor-acceptor Stenhouse adducts (DASAs). We simulate the photochemical experiment in silico, following the "hot" ground state dynamics for 10 ps after photoexcitation. Using state-of-the-art graphical processing units-enabled electronic structure calculations we performed in total ∼2 ns of nonadiabatic ab initio molecular dynamics discovering (a) critical intermediates that are involved in the open-to-closed transformation, (b) several competing pathways which lower the overall switching yield, and (c) key elements for future design strategies. Our dynamics describe the natural evolution of both the nuclear and electronic degrees of freedom that govern the interconversion between DASA ground-state intermediates, exposing significant elements for future design strategies of molecular switches.
Collapse
Affiliation(s)
- David M Sanchez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Umberto Raucci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Zheng C, Yu Y, Kuang S, Zhu B, Zhou H, Zhang SQ, Yang J, Shi L, Ran C. β-Amyloid Peptides Manipulate Switching Behaviors of Donor-Acceptor Stenhouse Adducts. Anal Chem 2021; 93:9887-9896. [PMID: 34235921 DOI: 10.1021/acs.analchem.1c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular switching plays a critical role in biological and displaying systems. Donor-acceptor Stenhouse adducts (DASAs) is a newly re-discovered series of switchable photochromes, and light is the most used approach to control its switching behavior. In this report, we speculated that hydrophobic binding pockets of biologically relevant peptides/proteins could be harnessed to alter its switching behavior without the assistance of light. We designed and synthesized a DASA compound SHA-2, and we demonstrated that the Aβ40 species could stabilize SHA-2 in the linear conformation and decrease the rate of molecular switching via fluorescence spectral studies. Moreover, molecular dynamics simulation revealed that SHA-2 could bind to the hydrophobic fragment of the peptide and resulted in substantial changes in the tertiary structure of Aβ40 monomer. This structural change is likely to impede the aggregation of Aβ40, as evidenced by the results from thioflavin T fluorescence and ProteoStat aggregation detection experiments. We believe that our study opens a new window to alter the switching behavior of DASA via DASA-peptide/protein interactions.
Collapse
Affiliation(s)
- Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States.,PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yue Yu
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Shi Kuang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Heng Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Shao-Qing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| |
Collapse
|
8
|
Martínez-López D, Santamaría-Aranda E, Marazzi M, García-Iriepa C, Sampedro D. π-Bridge Substitution in DASAs: The Subtle Equilibrium between Photochemical Improvements and Thermal Control*. Chemistry 2021; 27:4420-4429. [PMID: 33258498 DOI: 10.1002/chem.202004988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 01/25/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are playing an outstanding role as innovative and versatile photoswitches. Until now, all the efforts have been spent on modifying the donor and acceptor moieties to modulate the absorption energy and improve the cyclization and reversion kinetics. However, there is a strong dependence on specific structural modifications and a lack of predictive behavior, mostly owing to the complex photoswitching mechanism. Here, by means of a combined experimental and theoretical study, the effect of chemical modification of the π-bridge linking the donor and acceptor moieties is systematically explored, revealing the significant impact on the absorption, photocyclization, and relative stability of the open form. In particular, a position along the π-bridge is found to be the most suited to redshift the absorption while preserving the cyclization. However, thermal back-reaction to the initial isomer is blocked. These effects are explained in terms of an increased acceptor capability offered by the π-bridge substituent that can be modulated. This strategy opens the path toward derivatives with infra-red absorption and a potential anchoring point for further functionalization.
Collapse
Affiliation(s)
- David Martínez-López
- Departamento de Química, Centro de Investigación en Síntesis, Química (CISQ), University of La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Eduardo Santamaría-Aranda
- Departamento de Química, Centro de Investigación en Síntesis, Química (CISQ), University of La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Marco Marazzi
- Departamento de Química, Centro de Investigación en Síntesis, Química (CISQ), University of La Rioja, Madre de Dios 53, 26006, Logroño, Spain.,Department of Analytical Chemistry, Physical Chemistry and Chemical, Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, km 33,600, 28871, Alcalá de Henares, Madrid, Spain.,Chemical Research Institute "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Cristina García-Iriepa
- Department of Analytical Chemistry, Physical Chemistry and Chemical, Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, km 33,600, 28871, Alcalá de Henares, Madrid, Spain.,Chemical Research Institute "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis, Química (CISQ), University of La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| |
Collapse
|
9
|
Berraud-Pache R, Santamaría-Aranda E, de Souza B, Bistoni G, Neese F, Sampedro D, Izsák R. Redesigning donor-acceptor Stenhouse adduct photoswitches through a joint experimental and computational study. Chem Sci 2021; 12:2916-2924. [PMID: 34164058 PMCID: PMC8179403 DOI: 10.1039/d0sc06575g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/03/2022] Open
Abstract
Many studies have recently explored a new class of reversible photoswitching compounds named Donor-Acceptor Stenhouse Adducts (DASAs). Upon light irradiation, these systems evolve from a coloured open-chain to a colourless closed-ring form, while the thermal back-reaction occurs at room temperature. In order to fulfill the requirements for different applications, new molecules with specific properties need to be designed. For instance, shifting the activation wavelength towards the red part of the visible spectrum is of relevance to biological applications. By using accurate computational calculations, we have designed new DASAs and predicted some of their photophysical properties. Starting from well-studied donor and acceptor parts, we have shown that small chemical modifications can lead to substantial changes in both photophysical and photoswitching properties of the resulting DASAs. Furthermore, we have also analysed how these substitutions impact the electronic structure of the systems. Finally, some pertinent candidates have been successfully synthesized and their photoswitching properties have been characterized experimentally.
Collapse
Affiliation(s)
- Romain Berraud-Pache
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
- Sorbonne Université, Laboratoire d'Archéologie Moléculaire et Structurale, CNRS UMR 8220, UPMC - Tour 23, 3ème étage Couloir 23-33, BP 225, 4 place Jussieu 75005 Paris France
| | - Eduardo Santamaría-Aranda
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja Madre de Dios 53 E-26006 Logroño Spain
| | | | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja Madre de Dios 53 E-26006 Logroño Spain
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
10
|
Sanchez DM, Raucci U, Ferreras KN, Martínez TJ. Putting Photomechanical Switches to Work: An Ab Initio Multiple Spawning Study of Donor-Acceptor Stenhouse Adducts. J Phys Chem Lett 2020; 11:7901-7907. [PMID: 32864975 DOI: 10.1021/acs.jpclett.0c02401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photomechanical switches are light sensitive molecules capable of transducing the energy of a photon into mechanical work via photodynamics. In this Letter, we present the first atomistic investigation of the photodynamics of a novel class of photochromes called donor-acceptor Stenhouse adducts (DASA) using state-of-the-art ab initio multiple spawning interfaced with state-averaged complete active-space self-consistent field theory. Understanding the Z/E photoisomerization mechanism in DASAs at the molecular level is crucial in designing new derivatives with improved photoswitching capabilities. Our dynamics simulations show that the actinic step consists of competing nonradiative relaxation pathways that collectively contribute to DASAs' low (21% in toluene) photoisomerization quantum yield. Furthermore, we highlight the important role the intramolecular hydrogen bond plays in the selectivity of photoisomerization in DASAs, identifying it as a possible structural element to tune DASA properties. Our fully ab initio simulations reveal the key degrees of freedom involved in the actinic step, paving the way for the rational design of new generations of DASAs with improved quantum yield and efficiency.
Collapse
Affiliation(s)
- D M Sanchez
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - U Raucci
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - K N Ferreras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Metin E, Arsu N, Catak S, Aviyente V. Photophysical, kinetic and thermodynamic study of one-component Type II thioxanthone acetic acid photoinitiators. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Mallo N, Tron A, Andréasson J, Harper JB, Jacob LSD, McClenaghan ND, Jonusauskas G, Beves JE. Hydrogen‐Bonding Donor‐Acceptor Stenhouse Adducts. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Neil Mallo
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Arnaud Tron
- Univ. Bordeaux/CNRS 351 cours de la Libération 33405 Talence Cedex France
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | | | | | | | | | | |
Collapse
|
13
|
García‐Iriepa C, Marazzi M, Sampedro D. From Light Absorption to Cyclization: Structure and Solvent Effects in Donor‐Acceptor Stenhouse Adducts. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cristina García‐Iriepa
- Laboratoire Modélisation et Simulation Multi EchelleUniversité Paris-Est, MSME, UMR 8208 CNRS, UPEM 5 bd Descartes 77454 Marne-la-Vallée France
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28805 Alcalá de Henares (Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares (Madrid Spain
| | - Diego Sampedro
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ)Universidad de La Rioja Madre de Dios 53 E-26006 Logroño Spain
| |
Collapse
|
14
|
Chen Q, Diaz YJ, Hawker MC, Martinez MR, Page ZA, Xiao-An Zhang S, Hawker CJ, Read de Alaniz J. Stable Activated Furan and Donor–Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00533] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiaonan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | |
Collapse
|
15
|
Mallo N, Foley ED, Iranmanesh H, Kennedy ADW, Luis ET, Ho J, Harper JB, Beves JE. Structure-function relationships of donor-acceptor Stenhouse adduct photochromic switches. Chem Sci 2018; 9:8242-8252. [PMID: 30542573 PMCID: PMC6240811 DOI: 10.1039/c8sc03218a] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The first in-depth, systematic study of the photoswitching properties of Donor-Acceptor Stenhouse Adducts (DASAs) is reported. Barbituric acid derived DASAs functionalised with 14 different amines ranging from dimethylamine to 4-methoxy-N-methylaniline were structurally characterised in solution using 1H and 13C NMR spectroscopy and, in eight cases, in the solid state by single crystal X-ray diffraction. The distribution of coloured and colourless isomers in the dark, their photostationary states under irradiation, apparent thermal half-lives, and fatigue resistance are systematically compared. A simple kinetic model is used to characterise photoswitching behaviour and reveals that minor structural modifications can significantly improve the photoswitching properties of DASA photochromes. These modifications result in excellent photoswitching properties for '1st generation' DASAs in chloroform, including exceptional fatigue resistance, opening the door for these photochromic molecules to find widespread applications.
Collapse
Affiliation(s)
- Neil Mallo
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Eric D Foley
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Hasti Iranmanesh
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Aaron D W Kennedy
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Ena T Luis
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Junming Ho
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Jason B Harper
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Jonathon E Beves
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| |
Collapse
|
16
|
Tonnelé C, Champagne B, Muccioli L, Castet F. Second-order nonlinear optical properties of Stenhouse photoswitches: insights from density functional theory. Phys Chem Chem Phys 2018; 20:27658-27667. [PMID: 30375601 DOI: 10.1039/c8cp05843a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first investigation of the second-order nonlinear optical (NLO) properties of donor-acceptor Stenhouse adducts (DASAs), an emerging class of colored photochromes that undergo photoswitching with visible light to a colorless form. By using time-dependent density functional theory, we provide insights into the relationships linking the nature of the chemical substituents to the amplitude and contrasts of the NLO response. Solvent and frequency dispersion effects are also analyzed. The calculations predict that DASAs behave as high contrast NLO switches, a finding that extends their potential applications to photo-responsive NLO materials and devices.
Collapse
Affiliation(s)
- Claire Tonnelé
- Institut des Sciences Moléculaires (ISM, UMR CNRS 5255), University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France.
| | | | | | | |
Collapse
|
17
|
Marazzi M, Gattuso H, Monari A, Assfeld X. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules. Front Chem 2018; 6:86. [PMID: 29666792 PMCID: PMC5891624 DOI: 10.3389/fchem.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Collapse
Affiliation(s)
- Marco Marazzi
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France.,Departamento de Química, Centro de Investigacíon en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Hugo Gattuso
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
18
|
Bull JN, Carrascosa E, Mallo N, Scholz MS, da Silva G, Beves JE, Bieske EJ. Photoswitching an Isolated Donor-Acceptor Stenhouse Adduct. J Phys Chem Lett 2018; 9:665-671. [PMID: 29356541 DOI: 10.1021/acs.jpclett.7b03402] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a new class of photoswitching molecules with excellent fatigue resistance and synthetic tunability. Here, tandem ion mobility mass spectrometry coupled with laser excitation is used to characterize the photocyclization reaction of isolated, charge-tagged DASA molecules over the 450-580 nm range. The experimental maximum response at 530 nm agrees with multireference perturbation theory calculations for the S1 ← S0 transition maximum at 533 nm. Photocyclization in the gas phase involves absorption of at least two photons; the first photon induces Z-E isomerization from the linear isomer to metastable intermediate isomers, while the second photon drives another E-Z isomerization and 4π-electrocyclization reaction. Cyclization is thermally reversible in the gas phase with collisional excitation.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Neil Mallo
- School of Chemistry, UNSW Sydney , High Street, Kensington, New South Wales 2052, Australia
| | - Michael S Scholz
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jonathon E Beves
- School of Chemistry, UNSW Sydney , High Street, Kensington, New South Wales 2052, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|