Uddin M, Basak A, Pramanik A, Singh S, Krolczyk GM, Prakash C. Evaluating Hole Quality in Drilling of Al 6061 Alloys.
MATERIALS 2018;
11:ma11122443. [PMID:
30513850 PMCID:
PMC6317169 DOI:
10.3390/ma11122443]
[Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022]
Abstract
Hole quality in drilling is considered a precursor for reliable and secure component assembly, ensuring product integrity and functioning service life. This paper aims to evaluate the influence of the key process parameters on drilling performance. A series of drilling tests with new TiN-coated high speed steel (HSS) bits are performed, while thrust force and torque are measured with the aid of an in-house built force dynamometer. The effect of process mechanics on hole quality, e.g., dimensional accuracy, burr formation, surface finish, is evaluated in relation to drill-bit wear and chip formation mechanism. Experimental results indicate that the feedrate which dictates the uncut chip thickness and material removal rate is the most dominant factor, significantly impacting force and hole quality. For a given spindle speed range, maximum increase of axial force and torque is 44.94% and 47.65%, respectively, when feedrate increases from 0.04 mm/rev to 0.08 mm/rev. Stable, jerk-free cutting at feedrate of as low as 0.04 mm/rev is shown to result in hole dimensional error of less than 2%. A low feedrate along with high spindle speed may be preferred. The underlying tool wear mechanism and progression needs to be taken into account when drilling a large number of holes. The findings of the paper clearly signify the importance and choice of drilling parameters and provide guidelines for manufacturing industries to enhance a part’s dimensional integrity and productivity.
Collapse