1
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
2
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
3
|
Chugunova E, Matveeva V, Tulesinova A, Iskanderov E, Akylbekov N, Dobrynin A, Khamatgalimov A, Appazov N, Boltayeva L, Duisembekov B, Zhanakov M, Aleksandrova Y, Sashenkova T, Klimanova E, Allayarova U, Balakina A, Mishchenko D, Burilov A, Neganova M. Water-Soluble Salts Based on Benzofuroxan Derivatives-Synthesis and Biological Activity. Int J Mol Sci 2022; 23:14902. [PMID: 36499230 PMCID: PMC9739695 DOI: 10.3390/ijms232314902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
A series of novel water-soluble salts of benzofuroxans was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan with various amines. The salts obtained showed good effectiveness of the pre-sowing treatment of seeds of agricultural crops at concentrations of 20-40 mmol. In some cases, the seed treatment with salts leads not only to improved seed germination, but also to the suppression of microflora growth. Additionally, their anti-cancer activityin vitrohas been researched. The compounds with morpholine fragments or a fragment of N-dimethylpropylamine, demonstrated the highest cytotoxic activity, which is in good correlation with the ability to inhibit the glycolysis process in tumor cells. Two compounds 4e and 4g were selected for further experiments using laboratory animals. It was found that the lethal dose of 50% (LD50) is 22.0 ± 1.33 mg/kg for 4e and 13.75 ± 1.73 mg/kg for 4g, i.e., compound 4e is two times less toxic than 4g, according to the mouse model in vivo. It was shown that the studied compounds exhibit antileukemia activity after a single intraperitoneal injection at doses from 1.25 to 5 mg/kg, as a result of which the average lifespan of animals with a P388 murine leukemia tumor increases from 20 to 28%. Thus, the water-soluble salts of benzofuroxans can be considered as promisingcandidates for further development, both as anti-cancer agents and as stimulants for seed germination and regulators of microflora crop growth.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Victoria Matveeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Alena Tulesinova
- The Kazan National Research Technological University, Kazan 420015, Russia
| | | | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Ayrat Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Nurbol Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan
- I. Zhakhaev Kazakh Scientific Research Institute of Rice Growing, Kyzylorda 120008, Kazakhstan
| | - Lyazat Boltayeva
- Kazakh Scientific Research Institute of Plant Protection and Quarantine Named after Zhazken Zhiembayev LLP, Almaty A30M0H6, Kazakhstan
| | - Bakhytzhan Duisembekov
- Kazakh Scientific Research Institute of Plant Protection and Quarantine Named after Zhazken Zhiembayev LLP, Almaty A30M0H6, Kazakhstan
| | - Mukhtar Zhanakov
- L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatyana Sashenkova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Elena Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Ugulzhan Allayarova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Anastasia Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Denis Mishchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov—MSU, Moscow 119991, Russia
- Biomedical Institute of the Scientific and Educational Center, Moscow Regional State University in Chernogolovka, Mytishchi 141014, Russia
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| |
Collapse
|
4
|
Jabeen N, Sohail M, Shah SA, Mahmood A, Khan S, Kashif MUR, Khaliq T. Silymarin nanocrystals-laden chondroitin sulphate-based thermoreversible hydrogels; A promising approach for bioavailability enhancement. Int J Biol Macromol 2022; 218:456-472. [PMID: 35872320 DOI: 10.1016/j.ijbiomac.2022.07.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Hydrogels has gained tremendous interest as a controlled release drug delivery. However, currently it is a big challenge to attain high drug-loading as well as stable and sustained release of hydrophobic drugs. The poor aqueous solubility and low bioavailability of many drugs have driven the need for research in new formulations. This manuscript hypothesized that incorporation of nanocrystals of hydrophobic drug, such as silymarin into thermoreversible hydrogel could be a solution to these problems. Herein, we prepared nanocrystals of silymarin by antisolvent precipitation technique and characterized for morphology, particle size, polydispersity index (PDI) and zeta potential. Moreover, physical cross-linking of hydrogel formulations based on chondroitin sulphate (CS), kappa-Carrageenan (κ-Cr) and Pluronic® F127 was confirmed by Fourier transformed infrared spectroscopy (FT-IR). The hydrogel gelation time and temperature of optimized hydrogel was 14 ± 3.2 s and 34 ± 0.6 °C, respectively. The release data revealed controlled release of silymarin up to 48 h and in-vivo pharmacokinetic profiling was done in rabbits and further analyzed by high-performance liquid chromatography (HPLC). It is believed that the nanocrystals loaded thermoreversible injectable hydrogel system fabricated in this study provides high drug loading as well as controlled and stable release of hydrophobic drug for extended period.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Punjab-Pakistan
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | | | - Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
5
|
Qamar M, Abbas G, Afzaal M, Naz MY, Ghuffar A, Irfan M, Legutko S, Jozwik J, Zawada-Michalowska M, Ghanim AAJ, Rahman S, Niazi UM, Jalalah M, Alkahtani FS, Khan MKA, Kosicka E. Gold Nanorods for Doxorubicin Delivery: Numerical Analysis of Electric Field Enhancement, Optical Properties and Drug Loading/Releasing Efficiency. MATERIALS 2022; 15:ma15051764. [PMID: 35268995 PMCID: PMC8911263 DOI: 10.3390/ma15051764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
The optical properties and electric field enhancement of gold nanorods for different cases were investigated in this study. The numerical analysis was carried out to understand the functionality and working of gold nanorods, while the experimental portion of the work was focused on the efficiency of gold nanorods for targeted drug delivery. COMSOL Multiphysics was used for numerical analysis. The theoretical results suggest the use of gold nanorods (AuNRs) for anticancer applications. The resonance peaks for gold nanorods of 10 nm diameter were observed at 560 nm. The resonance peaks shifted towards longer wavelengths with an increase in nanorod size. The resonance peaks showed a shift of 140 nm with a change in nanorod length from 25 to 45 nm. On the experimental side, 22 nm, 35 nm and 47 nm long gold nanorods were produced using the seed-mediated growth method. The surface morphology of the nanorods, as well as their optical characteristics, were characterized. Later, gold nanorods were applied to the targeted delivery of the doxorubicin drug. Gold nanorods showed better efficiency for doxorubicin drug loading time, release time, loading temperature, and release temperature. These results reveal that AuNRs@DA possess good ability to load and deliver the drug directly to the tumorous cells since these cells show high temperature and acidity.
Collapse
Affiliation(s)
- Muhammad Qamar
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
| | - Ghulam Abbas
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
- Correspondence:
| | - Muhammad Afzaal
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
| | - Muhammad Y. Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Abdul Ghuffar
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Stanislaw Legutko
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Jerzy Jozwik
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (J.J.); (M.Z.-M.); (E.K.)
| | - Magdalena Zawada-Michalowska
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (J.J.); (M.Z.-M.); (E.K.)
| | - Abdulnour Ali Jazem Ghanim
- Civil Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 61441, Saudi Arabia;
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Usama M. Niazi
- Department of Mechanical Engineering Technology, National Skills University Islamabad, Islamabad 44000, Pakistan;
| | - Mohammed Jalalah
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Fahad Salem Alkahtani
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Mohammad K. A. Khan
- Mechanical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia;
| | - Ewelina Kosicka
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (J.J.); (M.Z.-M.); (E.K.)
| |
Collapse
|
6
|
Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2019; 1873:188319. [PMID: 31678141 DOI: 10.1016/j.bbcan.2019.188319] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.
Collapse
|
7
|
Yang MY, Zhao RR, Fang YF, Jiang JL, Yuan XT, Shao JW. Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy. Int J Pharm 2019; 570:118663. [DOI: 10.1016/j.ijpharm.2019.118663] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
8
|
Wang J, Li J, Ren J. Surface Modification of Poly(lactic-co-glycolic acid) Microspheres with Enhanced Hydrophilicity and Dispersibility for Arterial Embolization. MATERIALS 2019; 12:ma12121959. [PMID: 31216635 PMCID: PMC6630409 DOI: 10.3390/ma12121959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
In this study, a series of poly(lactic-co-glycolic acid) (PLGA) microspheres with different particle sizes for arterial embolization surgery were prepared. The polydopamine (PDA) and polydopamine/polyethyleneimine (PDA/PEI) were respectively coated on the PLGA microspheres as shells, in order to improve the hydrophilicity and dispersibility of PLGA embolization microspheres. After modification, with the introduction of PDA and PEI, many hydrophilic hydroxyl and amine groups appeared on the surface of the PLGA@PDA and PLGA@PDA/PEI microspheres. SEM images showed the morphologies, sizes, and changes of the as-prepared microspheres. Meanwhile, the XPS and FT-IR spectra demonstrated the successful modification of the PDA and PEI. Water contact angles (WCAs) of the PLGA@PDA and PLGA@PDA/PEI microspheres became smaller, indicating a certain improvement in surface hydrophilicity. In addition, the results of in vitro cytotoxicity showed that modification had little effect on the biosafety of the microspheres. The modified PLGA microspheres suggest a promising prospective application in biomedical field, as the modified microspheres can reduce difficulties in embolization surgery.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Shanghai Key Laboratory for R&D and Application of Metalic Functional Materials, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Shanghai Key Laboratory for R&D and Application of Metalic Functional Materials, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Shanghai Key Laboratory for R&D and Application of Metalic Functional Materials, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
9
|
Beibei D, Tiantang F, Jiafeng L, Li G, Qin Z, Wuyou Y, Hongyun T, Wenxin W, Zhongyong F. PLLA-Grafted Gelatin Amphiphilic Copolymer and Its Self-Assembled Nano Carrier for Anticancer Drug Delivery. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Du Beibei
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Fan Tiantang
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Li Jiafeng
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Gong Li
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Zhang Qin
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Ye Wuyou
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Tai Hongyun
- School of Chemistry; Bangor University; Bangor Gwynedd LL57 2DG UK
| | - Wang Wenxin
- Charles Institute of Dermatology; School of Medicine; University College Dublin; Belfield Dublin 4 D04V1W8 Ireland
| | - Fan Zhongyong
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| |
Collapse
|
10
|
Wang X, Li J, Kawazoe N, Chen G. Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E31. [PMID: 30583459 PMCID: PMC6337519 DOI: 10.3390/ma12010031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Nanoparticle-mediated photothermal therapy has been widely studied for cancer treatment. It is important to disclose how photothermally ablated tumor cells trigger immune responses. In this study, bovine serum albumin (BSA)-coated gold nanorods (BSA-coated AuNRs) were prepared and used for photothermal ablation of breast tumor cells. The BSA-coated AuNRs showed high photothermal conversion efficiency and good photothermal ablation effect towards tumor cells. The ablated tumor cells were co-cultured with immature dendritic cells (DCs) through a direct cell contacting model and diffusion model to confirm the stimulatory effects of cell⁻cell interaction and soluble factors released from ablated tumor cells. The results indicated that photothermally ablated tumor cells induced immune-stimulatory responses of DCs through both cell⁻cell interaction and soluble factors. The results should be useful for synergistic photothermal-immunotherapy of primary and metastatic cancer.
Collapse
Affiliation(s)
- Xiuhui Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Jingchao Li
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|