Ömeroğlu İ, Tümay SO, Makhseed S, Husain A, Durmuş M. A highly sensitive "ON-OFF-ON" dual optical sensor for the detection of Cu(II) ion and triazole pesticides based on novel BODIPY-substituted cavitand.
Dalton Trans 2021;
50:6437-6443. [PMID:
33890599 DOI:
10.1039/d1dt00792k]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The synthesis with full structural characterization including elemental analysis and 1H, 13C, 11B and 19F NMR, FT-IR and MALDI-TOF spectral data, along with the florescence sensing behavior of a new resorcin[4]arene cavitand 3 bearing multiple BODIPY sites achieved by the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) is being reported. The spatial orientation of multiple BODIPY-1,2,3-triazole arms based on the macrocyclic rigid core is of great interest since the resulting structure has been utilized as a fluorescent chemosensor for numerous metal cations. In particular, a remarkable decrease in the fluorescence emission towards Cu(ii) ions, i.e., "turn-off" response, has been obtained giving rise to an optical sensor for the detection of triazole fungicides, namely tebuconazole, triadimenol, triadimefon, i.e. "turn-on" response. Such a molecular system, hence, can be feasibly applied as a dual optical sensor, i.e. "a turn-on-off-on" system, for dangerous contaminants such as heavy metals and pesticides.
Collapse