1
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Liu Z, Bagnaninchi P, Yang Y. Impedance-Optical Dual-Modal Cell Culture Imaging With Learning-Based Information Fusion. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:983-996. [PMID: 34797763 DOI: 10.1109/tmi.2021.3129739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While Electrical Impedance Tomography (EIT) has found many biomedicine applications, better image quality is needed to provide quantitative analysis for tissue engineering and regenerative medicine. This paper reports an impedance-optical dual-modal imaging framework that primarily targets at high-quality 3D cell culture imaging and can be extended to other tissue engineering applications. The framework comprises three components, i.e., an impedance-optical dual-modal sensor, the guidance image processing algorithm, and a deep learning model named multi-scale feature cross fusion network (MSFCF-Net) for information fusion. The MSFCF-Net has two inputs, i.e., the EIT measurement and a binary mask image generated by the guidance image processing algorithm, whose input is an RGB microscopic image. The network then effectively fuses the information from the two different imaging modalities and generates the final conductivity image. We assess the performance of the proposed dual-modal framework by numerical simulation and MCF-7 cell imaging experiments. The results show that the proposed method could improve the image quality notably, indicating that impedance-optical joint imaging has the potential to reveal the structural and functional information of tissue-level targets simultaneously.
Collapse
|
3
|
Paivana G, Barmpakos D, Mavrikou S, Kallergis A, Tsakiridis O, Kaltsas G, Kintzios S. Evaluation of Cancer Cell Lines by Four-Point Probe Technique, by Impedance Measurements in Various Frequencies. BIOSENSORS 2021; 11:345. [PMID: 34562935 PMCID: PMC8466278 DOI: 10.3390/bios11090345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cell-based biosensors appear to be an attractive tool for the rapid, simple, and cheap monitoring of chemotherapy effects at a very early stage. In this study, electrochemical measurements using a four-point probe method were evaluated for suspensions of four cancer cell lines of different tissue origins: SK-N-SH, HeLa, MCF-7 and MDA-MB-231, all for two different population densities: 50 K and 100 K cells/500 μL. The anticancer agent doxorubicin was applied for each cell type in order to investigate whether the proposed technique was able to determine specific differences in cell responses before and after drug treatment. The proposed methodology can offer valuable insight into the frequency-dependent bioelectrical responses of various cellular systems using a low frequency range and without necessitating lengthy cell culture treatment. The further development of this biosensor assembly with the integration of specially designed cell/electronic interfaces can lead to novel diagnostic biosensors and therapeutic bioelectronics.
Collapse
Affiliation(s)
- Georgia Paivana
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Alexandros Kallergis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Odysseus Tsakiridis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| |
Collapse
|
4
|
Cortesi M, Samoré A, Lovecchio J, Ramilli R, Tartagni M, Giordano E, Crescentini M. Development of an electrical impedance tomography set-up for the quantification of mineralization in biopolymer scaffolds. Physiol Meas 2021; 42. [PMID: 34190050 DOI: 10.1088/1361-6579/ac023b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022]
Abstract
Objective. 3D cell cultures are becoming a fundamental resource forin-vitrostudies, as they mimic more closelyin-vivobehavior. The analysis of these constructs, however, generally rely on destructive techniques, that prevent the monitoring over time of the same construct, thus increasing the results variability and the resources needed for each experiment.Approach. In this work, we focus on mineralization, a crucial process during maturation of artificial bone models, and propose electrical impedance tomography (EIT) as an alternative non-destructive approach. In particular, we discuss the development of an integrated hardware/software system capable of acquiring experimental data from 3D scaffolds and reconstructing the corresponding conductivity maps. We also show how the same software can test how the measurement is affected by biological features such as scaffold shrinking during the culture.Main results. An initial validation, comprising the acquisition of both a non-conductive phantom and alginate/gelatin scaffolds with known calcium content will be presented, together with thein-silicostudy of a cell-induced mineralization process. This analysis will allow for an initial verification of the systems functionality while limiting the effects of biological variability due to cell number and activity.Significance. Our results show the potential of EIT for the non-destructive quantification of matrix mineralization in 3D scaffolds, and open to the possible long term monitoring of this fundamental hallmark of osteogenic differentiation in hybrid tissue engineered constructs.
Collapse
Affiliation(s)
- Marilisa Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy
| | - Andrea Samoré
- Department of Mathematics Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Joseph Lovecchio
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Roberta Ramilli
- Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| | - Marco Tartagni
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy.,Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| | - Marco Crescentini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| |
Collapse
|
5
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|
6
|
De León SE, Pupovac A, McArthur SL. Three-Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy. Biotechnol Bioeng 2020; 117:1230-1240. [PMID: 31956986 DOI: 10.1002/bit.27270] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) cell culture has developed rapidly over the past 5-10 years with the goal of better replicating human physiology and tissue complexity in the laboratory. Quantifying cellular responses is fundamental in understanding how cells and tissues respond during their growth cycle and in response to external stimuli. There is a need to develop and validate tools that can give insight into cell number, viability, and distribution in real-time, nondestructively and without the use of stains or other labelling processes. Impedance spectroscopy can address all of these challenges and is currently used both commercially and in academic laboratories to measure cellular processes in 2D cell culture systems. However, its use in 3D cultures is not straight forward due to the complexity of the electrical circuit model of 3D tissues. In addition, there are challenges in the design and integration of electrodes within 3D cell culture systems. Researchers have used a range of strategies to implement impedance spectroscopy in 3D systems. This review examines electrode design, integration, and outcomes of a range of impedance spectroscopy studies and multiparametric systems relevant to 3D cell cultures. While these systems provide whole culture data, impedance tomography approaches have shown how this technique can be used to achieve spatial resolution. This review demonstrates how impedance spectroscopy and tomography can be used to provide real-time sensing in 3D cell cultures, but challenges remain in integrating electrodes without affecting cell culture functionality. If these challenges can be addressed and more realistic electrical models for 3D tissues developed, the implementation of impedance-based systems will be able to provide real-time, quantitative tracking of 3D cell culture systems.
Collapse
Affiliation(s)
- Sorel E De León
- Bioengineering Research Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Aleta Pupovac
- Bioengineering Research Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia.,CSIRO Probing Biosystems Future Science Platform, Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Research Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia.,CSIRO Probing Biosystems Future Science Platform, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Morgan K, Gamal W, Samuel K, Morley SD, Hayes PC, Bagnaninchi P, Plevris JN. Application of Impedance-Based Techniques in Hepatology Research. J Clin Med 2019; 9:jcm9010050. [PMID: 31878354 PMCID: PMC7019217 DOI: 10.3390/jcm9010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
There are a variety of end-point assays and techniques available to monitor hepatic cell cultures and study toxicity within in vitro models. These commonly focus on one aspect of cell metabolism and are often destructive to cells. Impedance-based cellular assays (IBCAs) assess biological functions of cell populations in real-time by measuring electrical impedance, which is the resistance to alternating current caused by the dielectric properties of proliferating of cells. While the uses of IBCA have been widely reported for a number of tissues, specific uses in the study of hepatic cell cultures have not been reported to date. IBCA monitors cellular behaviour throughout experimentation non-invasively without labelling or damage to cell cultures. The data extrapolated from IBCA can be correlated to biological events happening within the cell and therefore may inform drug toxicity studies or other applications within hepatic research. Because tight junctions comprise the blood/biliary barrier in hepatocytes, there are major consequences when these junctions are disrupted, as many pathologies centre around the bile canaliculi and flow of bile out of the liver. The application of IBCA in hepatology provides a unique opportunity to assess cellular polarity and patency of tight junctions, vital to maintaining normal hepatic function. Here, we describe how IBCAs have been applied to measuring the effect of viral infection, drug toxicity /IC50, cholangiopathies, cancer metastasis and monitoring of the gut-liver axis. We also highlight key areas of research where IBCAs could be used in future applications within the field of hepatology.
Collapse
Affiliation(s)
- Katie Morgan
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
- Correspondence:
| | - Wesam Gamal
- James Nasmyth Building, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University School of Engineering and Physical Sciences, Edinburgh EH14 4AS, UK;
| | - Kay Samuel
- The Jack Copland Centre, Advanced Therapeutics, Scottish National Blood Transfusion Service, 52 Research Avenue North, Edinburgh EH14 4BE, UK;
| | - Steven D. Morley
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
| | - Peter C. Hayes
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
| | - Pierre Bagnaninchi
- MRC Centre for Regenerative Medicine 5 Little France Drive, Edinburgh EH16 4UU, UK;
| | - John N. Plevris
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
| |
Collapse
|
8
|
Schwarz M, Jendrusch M, Constantinou I. Spatially resolved electrical impedance methods for cell and particle characterization. Electrophoresis 2019; 41:65-80. [PMID: 31663624 DOI: 10.1002/elps.201900286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Electrical impedance is an established technique used for cell and particle characterization. The temporal and spectral resolution of electrical impedance have been used to resolve basic cell characteristics like size and type, as well as to determine cell viability and activity. Such electrical impedance measurements are typically performed across the entire sample volume and can only provide an overall indication concerning the properties and state of that sample. For the study of heterogeneous structures such as cell layers, biological tissue, or polydisperse particle mixtures, an overall measured impedance value can only provide limited information and can lead to data misinterpretation. For the investigation of localized sample properties in complex heterogeneous structures/mixtures, the addition of spatial resolution to impedance measurements is necessary. Several spatially resolved impedance measurement techniques have been developed and applied to cell and particle research, including electrical impedance tomography, scanning electrochemical microscopy, and microelectrode arrays. This review provides an overview of spatially resolved impedance measurement methods and assesses their applicability for cell and particle characterization.
Collapse
Affiliation(s)
- Marvin Schwarz
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
A Review on Biomaterials for 3D Conductive Scaffolds for Stimulating and Monitoring Cellular Activities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050961] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the last years, scientific research in biotechnology has been reporting a considerable boost forward due to many advances marked in different technological areas. Researchers working in the field of regenerative medicine, mechanobiology and pharmacology have been constantly looking for non-invasive methods able to track tissue development, monitor biological processes and check effectiveness in treatments. The possibility to control cell cultures and quantify their products represents indeed one of the most promising and exciting hurdles. In this perspective, the use of conductive materials able to map cell activity in a three-dimensional environment represents the most interesting approach. The greatest potential of this strategy relies on the possibility to correlate measurable changes in electrical parameters with specific cell cycle events, without affecting their maturation process and considering a physiological-like setting. Up to now, several conductive materials has been identified and validated as possible solutions in scaffold development, but still few works have stressed the possibility to use conductive scaffolds for non-invasive electrical cell monitoring. In this picture, the main objective of this review was to define the state-of-the-art concerning conductive biomaterials to provide researchers with practical guidelines for developing specific applications addressing cell growth and differentiation monitoring. Therefore, a comprehensive review of all the available conductive biomaterials (polymers, carbon-based, and metals) was given in terms of their main electric characteristics and range of applications.
Collapse
|
10
|
Zhou W, Graham K, Lucendo-Villarin B, Flint O, Hay DC, Bagnaninchi P. Combining stem cell-derived hepatocytes with impedance sensing to better predict human drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:77-83. [PMID: 30572740 DOI: 10.1080/17425255.2019.1558208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The liver plays a central role in human drug metabolism. To model drug metabolism, the major cell type of the liver, the hepatocyte, is commonly used. Hepatocytes can be derived from human and animal sources, including pluripotent stem cells. Cell-based models have shown promise in modeling human drug exposure. The assays used in those studies are normally 'snap-shot' in nature, and do not provide the complete picture of human drug exposure. Research design and methods: In this study, we employ stem cell-derived hepatocytes and impedance sensing to model human drug toxicity. This impedance-based stem cell assay reports hepatotoxicity in real time after treatment with compounds provided by industry. Results: Using electric cell-substrate impedance Sensing (ECIS), we were able to accurately measure drug toxicity post-drug exposure in real time and more quickly than gold standard biochemical assays. Conclusions: ECIS is robust and non-destructive methodology capable of monitoring human drug exposure with superior performance to current gold standard 'snapshot' assays. We believe that the methodology presented within this article could prove valuable in the quest to better predict off-target effects of drugs in humans.
Collapse
Affiliation(s)
- Wenli Zhou
- a Department of Medical Oncology , Changzheng Hospital, Navy medical University , Shanghai , China
| | - Karen Graham
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Baltasar Lucendo-Villarin
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Oliver Flint
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - David C Hay
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Pierre Bagnaninchi
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
11
|
Amini M, Hisdal J, Kalvøy H. Applications of Bioimpedance Measurement Techniques in Tissue Engineering. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2018; 9:142-158. [PMID: 33584930 PMCID: PMC7852004 DOI: 10.2478/joeb-2018-0019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 05/19/2023]
Abstract
Rapid development in the field of tissue engineering necessitates implementation of monitoring methods for evaluation of the viability and characteristics of the cell cultures in a real-time, non-invasive and non-destructive manner. Current monitoring techniques are mainly histological and require labeling and involve destructive tests to characterize cell cultures. Bioimpedance measurement technique which benefits from measurement of electrical properties of the biological tissues, offers a non-invasive, label-free and real-time solution for monitoring tissue engineered constructs. This review outlines the fundamentals of bioimpedance, as well as electrical properties of the biological tissues, different types of cell culture constructs and possible electrode configuration set ups for performing bioimpedance measurements on these cell cultures. In addition, various bioimpedance measurement techniques and their applications in the field of tissue engineering are discussed.
Collapse
Affiliation(s)
- M. Amini
- Department of Physics, University of Oslo, Oslo, Norway
| | - J. Hisdal
- Vascular Investigations and Circulation lab, Aker Hospital, Oslo University Hospital, Oslo, Norway
| | - H. Kalvøy
- Department of Clinical and Biomedical Engineering, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|