1
|
Wallbridge SP, Archer S, Elsegood MRJ, Wagner JL, Christie JK, Dann SE. An investigation into the adsorption mechanism of n-butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach. Phys Chem Chem Phys 2023; 25:19911-19922. [PMID: 37458457 DOI: 10.1039/d3cp02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g-1 for n-butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite β-cage. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the presence of hydrogen bonding between adsorbed butanol molecules within the cage; the presence of three different O-H stretching modes indicates the formation of butanol clusters of varying size. Ab initio molecular dynamics simulations show the formation of intermolecular hydrogen bonding between the butanol molecules, with an average hydrogen-bond coordination number of 0.9 after 15 ps simulation time. The simulations also uniquely demonstrate the presence of weaker interactions between the alcohol O-H group and the π-orbital of the imidazole ring on the internal surface of the cage during early stages of adsorption. The calculated adsorption energy per butanol molecule is -33.7 kJ mol-1, confirming that the butanol is only weakly bound, driven primarily by the hydrogen bonding. Solid-state MAS NMR spectra suggest that the adsorbed butanol molecules possess a reasonable degree of mobility in their adsorbed state, rather than being rigidly held in specific sites. 2D 13C-1H heteronuclear correlation (HETCOR) experiments show interactions between the butanol aliphatic chain and the ZIF-8 framework experimentally, suggesting that O-H interactions with the π-orbital are only short lived. The insight gained from these results will allow the design of more efficient ways of recovering and isolating n-butanol, an important biofuel, from low-concentration solutions.
Collapse
Affiliation(s)
| | - Stuart Archer
- Department of Chemistry, Loughborough University, Loughborough, UK.
| | | | - Jonathan L Wagner
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | | | - Sandra E Dann
- Department of Chemistry, Loughborough University, Loughborough, UK.
| |
Collapse
|
2
|
Conesa J, Morales M, García-Bosch N, Ramos IR, Guerrero-Ruiz A. GRAPHITE SUPPORTED HETEROPOLYACID AS A REGENERABLE CATALYST IN THE DEHYDRATION OF 1-BUTANOL TO BUTENES. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Macchiagodena M, Bassu G, Vettori I, Fratini E, Procacci P, Pagliai M. 2-Butanol Aqueous Solutions: A Combined Molecular Dynamics and Small/Wide-Angle X-ray Scattering Study. J Phys Chem A 2022; 126:8826-8833. [DOI: 10.1021/acs.jpca.2c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Gavino Bassu
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Irene Vettori
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Emiliano Fratini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Piero Procacci
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Marco Pagliai
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
4
|
Manna MS, Mazumder A, Bhowmick TK, Gayen K. Economic analysis of biobutanol recovery from the acetone-butanol-ethanol fermentation using molasses. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Microorganisms as New Sources of Energy. ENERGIES 2022. [DOI: 10.3390/en15176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate.
Collapse
|
6
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
7
|
Narisetty V, R. R, Maitra S, Tarafdar A, Alphy MP, Kumar AN, Madhavan A, Sirohi R, Awasthi MK, Sindhu R, Varjani S, Binod P. Waste-Derived Fuels and Renewable Chemicals for Bioeconomy Promotion: A Sustainable Approach. BIOENERGY RESEARCH 2022; 16:16-32. [PMID: 35350609 PMCID: PMC8947955 DOI: 10.1007/s12155-022-10428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.
Collapse
Affiliation(s)
- Vivek Narisetty
- Moolec Science, Innovation Centre, Gallows Hill, Warwick, CV34 6UW UK
| | - Reshmy R.
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122 Kerala India
| | - Shraddha Maitra
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 Uttar Pradesh India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - A. Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, 9 , Seongbuk-gu, Seoul 02841 South Korea
- Centre for Energy and Environmental Sustainabilty, Lucknow, 226001 Uttar Pradesh India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712 100 Shaanxi China
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505 Kerala India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, 382010 Gujarat India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019 Kerala India
| |
Collapse
|
8
|
Kaniapan S, Pasupuleti J, Patma Nesan K, Abubackar HN, Umar HA, Oladosu TL, Bello SR, Rene ER. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3427. [PMID: 35329114 PMCID: PMC8953080 DOI: 10.3390/ijerph19063427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential. Therefore, the focus of this review is on the assessment of rice residue characterization, valorization approaches, pre-treatment limitations, and techno-economic analyses that yield a better biofuel to adapt to current and future energy demand. The pre-treatment methods are also discussed through torrefaction, briquetting, pelletization and hydrothermal carbonization. The review also covers the limitations of rice residue utilization, as well as the phase structure of thermochemical and biochemical processes. The paper concludes that rice residue is a preferable sustainable biomass option for both economic and environmental growth.
Collapse
Affiliation(s)
- Sivabalan Kaniapan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Kartikeyan Patma Nesan
- Chemical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | | | - Hadiza Aminu Umar
- Mechanical Engineering Department, Bayero University Kano, Kano PMB 3011, Nigeria;
- Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
| | - Temidayo Lekan Oladosu
- Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
| | - Segun R. Bello
- Department of Agricultural and Bioenvironmental Engineering Technology, Federal College of Agriculture Ishiagu, Ishiagu 402143, Nigeria;
| | - Eldon R. Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands;
| |
Collapse
|
9
|
Shenbagamuthuraman V, Patel A, Khanna S, Banerjee E, Parekh S, Karthick C, Ashok B, Velvizhi G, Nanthagopal K, Ong HC. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. CHEMOSPHERE 2022; 286:131587. [PMID: 34303047 DOI: 10.1016/j.chemosphere.2021.131587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Alcohols could be the biggest factor for the improvement of world biofuel economy in the present century due to their excellent properties compared to petroleum products. The primary concerns of sustainable alcohol production for meeting the growing energy demand owing to the selection of viable feedstock and this might enhance the opportunities for developing numerous advanced techniques. In this review, the valorization of alcohol production from several production routes has been exposed by covering the traditional routes to the present state of the art technologies. Even though the fossil fuel conversion could be dominant method for methanol production, many recent innovations like photo electrochemical synthesis and electrolysis methods might play vital role in production of renewable methanol in future. There have been several production routes for production of ethanol and among which the fermentation of lignocellulose biomass would be the ultimate choice for large scale shoot up. The greenhouse gas recovery in the form of alcohols through electrochemistry technique and hydrogenation method are the important methods for commercialization of alcohols in future. It is also observed that algae based renewable bio-alcohols is highly influenced by carbohydrate content and sustainable approaches in algae conversion to bio-alcohols would bring greater demand in future market. There is a lack of innovation in higher alcohols production in single process and this could be bounded by combining dehydrogenation and decarboxylation techniques. Finally, this review enlists the opportunities and challenges of existing alcohols production and recommended the possible routes for making significant enhancement in production.
Collapse
Affiliation(s)
- V Shenbagamuthuraman
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Adamya Patel
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shaurya Khanna
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Eleena Banerjee
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shubh Parekh
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - C Karthick
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - G Velvizhi
- CO(2) Research and Green Technology Center, Vellore Institute of Technology, Vellore, 632014, India
| | - K Nanthagopal
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
10
|
Lee HY, You TS, Chen CL. Energy efficient design of bio-butanol purification process from acetone butanol ethanol fermentation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Seekhiaw P, Pinthong P, Praserthdam P, Jongsomjit B. Optimal Conditions for Butanol Production from Ethanol over MgAlO Catalyst Derived from Mg-Al Layer Double Hydroxides. J Oleo Sci 2021; 71:141-149. [PMID: 34880152 DOI: 10.5650/jos.ess21264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The MgAlO catalyst was obtained from thermal decomposition of the MgAl-LDH catalyst having Mg/Al molar ratio of 5. The catalytic Guerbet reaction of ethanol was investigated to determine the effect of WHSV and nitrogen flow rate on butanol production and product distribution. It was performed in a fixed-bed microreactor under continuous flow of vaporized ethanol mixed with N2. The MgAlO catalyst had high total basic sites and high total acid sites that were crucial for ethanol Guerbet reaction. The MgAlO catalyst showed the highest butanol selectivity at 300℃ under WHSV = 3.10 h-1 and nitrogen flow rate = 3,600 mL/h, and the highest butanol yield at 400℃ under WHSV = 3.10 h-1 and nitrogen flow rate = 900 mL/h. It can be summarized that in order to enhance the butanol yield, the low WHSV is preferred to increase the contact time of ethanol and catalyst under moderate temperature.
Collapse
Affiliation(s)
- Patchaporn Seekhiaw
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University.,Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Piriya Pinthong
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University.,Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Bunjerd Jongsomjit
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University.,Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| |
Collapse
|
12
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|
13
|
Cabezas R, Duran S, Zurob E, Plaza A, Merlet G, Araya-Lopez C, Romero J, Quijada-Maldonado E. Development of silicone-coated hydrophobic deep eutectic solvent-based membranes for pervaporation of biobutanol. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Ghanadzadeh Gilani A, Jahanbin sardroodi J, Verpoort F, Rahmdel S. Experimental study and thermodynamic modeling of phase equilibria of systems containing cyclohexane, alcohols (C4 and C5), and deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Hájek J, Hönig V, Obergruber M, Jenčík J, Vráblík A, Černý R, Pšenička M, Herink T. Advanced Biofuels Based on Fischer-Tropsch Synthesis for Applications in Gasoline Engines. MATERIALS 2021; 14:ma14113134. [PMID: 34200359 PMCID: PMC8201014 DOI: 10.3390/ma14113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
The aim of the article is to determine the properties of fuel mixtures of Fischer-Tropsch naphtha fraction with traditional gasoline (petrol) to be able to integrate the production of advanced alternative fuel based on Fischer-Tropsch synthesis into existing fuel markets. The density, octane number, vapor pressure, cloud point, water content, sulphur content, refractive index, ASTM color, heat of combustion, and fuel composition were measured using the gas chromatography method PIONA. It was found that fuel properties of Fischer-Tropsch naphtha fraction is not much comparable to conventional gasoline (petrol) due to the high n-alkane content. This research work recommends the creation of a low-percentage mixture of 3 vol.% of FT naphtha fraction with traditional gasoline to minimize negative effects-similar to the current legislative limit of 5 vol.% of bioethanol in E5 gasoline. FT naphtha fraction as a biocomponent does not contain sulphur or polyaromatic hydrocarbons nor benzene. Waste materials can be processed by FT synthesis. Fischer-Tropsch synthesis can be considered a universal fuel-the naphtha fraction cut can be declared as a biocomponent for gasoline fuel without any further necessary catalytic upgrading.
Collapse
Affiliation(s)
- Jiří Hájek
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (J.H.); (M.O.); (J.J.)
- ORLEN UniCRE a.s., 436 01 Litvínov, Czech Republic; (A.V.); (R.Č.); (M.P.); (T.H.)
| | - Vladimír Hönig
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (J.H.); (M.O.); (J.J.)
- Correspondence:
| | - Michal Obergruber
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (J.H.); (M.O.); (J.J.)
| | - Jan Jenčík
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (J.H.); (M.O.); (J.J.)
- ORLEN UniCRE a.s., 436 01 Litvínov, Czech Republic; (A.V.); (R.Č.); (M.P.); (T.H.)
| | - Aleš Vráblík
- ORLEN UniCRE a.s., 436 01 Litvínov, Czech Republic; (A.V.); (R.Č.); (M.P.); (T.H.)
| | - Radek Černý
- ORLEN UniCRE a.s., 436 01 Litvínov, Czech Republic; (A.V.); (R.Č.); (M.P.); (T.H.)
| | - Martin Pšenička
- ORLEN UniCRE a.s., 436 01 Litvínov, Czech Republic; (A.V.); (R.Č.); (M.P.); (T.H.)
| | - Tomáš Herink
- ORLEN UniCRE a.s., 436 01 Litvínov, Czech Republic; (A.V.); (R.Č.); (M.P.); (T.H.)
| |
Collapse
|
16
|
Zhou Z, Luo Y, Peng S, Zhang Q, Li Z, Li H. Enhancement of Butanol Production in a Newly Selected Strain through Accelerating Phase Shift by Different Phases C/N Ratio Regulation from Puerariae Slag Hydrolysate. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Obergruber M, Hönig V, Procházka P, Kučerová V, Kotek M, Bouček J, Mařík J. Physicochemical Properties of Biobutanol as an Advanced Biofuel. MATERIALS 2021; 14:ma14040914. [PMID: 33671951 PMCID: PMC7919056 DOI: 10.3390/ma14040914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Biobutanol is a renewable, less polluting, and potentially viable alternative fuel to conventional gasoline. Biobutanol can be produced from same sources as bioethanol, and it has many advantages over the widespread bioethanol. This paper systematically analyzes biobutanol fuel as an alternative to bioethanol in alcohol–gasoline mixtures and the physicochemical properties. Based on the conducted analyses, it was found that biobutanol mixtures have a more suitable behavior of vapor pressure without the occurrence of azeotrope, do not form a separate phase in lower temperature, it has higher energy density, but slightly reduce the octane number and a have higher viscosity. However, in general, biobutanol has many advantageous properties that could allow its use in gasoline engines instead of the commonly used bioethanol.
Collapse
Affiliation(s)
- Michal Obergruber
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic;
| | - Vladimír Hönig
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic;
- Correspondence: ; Tel.: +420-22438-2722
| | - Petr Procházka
- Department of Economics, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic;
| | - Viera Kučerová
- Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University of Zvolen, 960 53 Zvolen, Slovakia;
| | - Martin Kotek
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic; (M.K.); (J.M.)
| | - Jiří Bouček
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic;
| | - Jakub Mařík
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic; (M.K.); (J.M.)
| |
Collapse
|
18
|
Han X, Li S, An H, Zhao X, Wang Y. Improvement of n-butanol Guerbet condensation: a reaction integration of n-butanol Guerbet condensation and 1,1-dibutoxybutane hydrolysis. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00206f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
n-Butanol Guerbet condensation is a green route to 2-ethylhexanol (2EHO).
Collapse
Affiliation(s)
- Xiaoxu Han
- Hebei Provincial Key Laboratory of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuaiqi Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hualiang An
- Hebei Provincial Key Laboratory of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinqiang Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
19
|
Wang Z, Pang J, Song L, Li X, Yuan Q, Li X, Liu S, Zheng M. Conversion of Ethanol to n-Butanol over NiCeO2 Based Catalysts: Effects of Metal Dispersion and NiCe Interactions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, People’s Republic of China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Qiang Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Xinsheng Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Shimin Liu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, People’s Republic of China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| |
Collapse
|
20
|
Li Q, Wu M, Wen Z, Jiang Y, Wang X, Zhao Y, Liu J, Yang J, Jiang Y, Yang S. Optimization of n-butanol synthesis in Lactobacillus brevis via the functional expression of thl, hbd, crt and ter. ACTA ACUST UNITED AC 2020; 47:1099-1108. [DOI: 10.1007/s10295-020-02331-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Abstract
N-butanol is an important chemical and can be naturally synthesized by Clostridium species; however, the poor n-butanol tolerance of Clostridium impedes the further improvement in titer. In this study, Lactobacillus brevis, which possesses a higher butanol tolerance, was selected as host for heterologous butanol production. The Clostridium acetobutylicum genes thl, hbd, and crt which encode thiolase, β-hydroxybutyryl-CoA dehydrogenase, and crotonase, and the Treponema denticola gene ter, which encodes trans-enoyl-CoA reductase were cloned into a single plasmid to express the butanol synthesis pathway in L. brevis. A titer of 40 mg/L n-butanol was initially achieved with plasmid pLY15-opt, in which all pathway genes are codon-optimized. A titer of 450 mg/L of n-butanol was then synthesized when ter was further overexpressed in this pathway. The role of metabolic flux was reinforced with pLY15, in which only the ter gene was codon-optimized, which greatly increased the n-butanol titer to 817 mg/L. Our strategy significantly improved n-butanol synthesis in L. brevis and the final titer is the highest achieved amongst butanol-tolerant lactic acid bacteria.
Graphic abstract
Collapse
Affiliation(s)
- Qi Li
- grid.412600.1 0000 0000 9479 9538 College of Life Sciences Sichuan Normal University 610101 Chengdu China
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Meixian Wu
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Zhiqiang Wen
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Yuan Jiang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Xin Wang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Yawei Zhao
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Jinle Liu
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Junjie Yang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Yu Jiang
- grid.419092.7 0000 0004 0467 2285 Huzhou Center of Industrial Biotechnology Shanghai Institutes for Biological Sciences 313000 Huzhou China
| | - Sheng Yang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
- grid.419092.7 0000 0004 0467 2285 Huzhou Center of Industrial Biotechnology Shanghai Institutes for Biological Sciences 313000 Huzhou China
| |
Collapse
|
21
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
22
|
Dutta S, Ghosh S, Manna D, Chowdhury R. Energy and environmental performance of a near-zero-effluent rice straw to butanol production plant. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1831406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sambit Dutta
- Chemical Engineering Department, Jadavpur University, Kolkata, India
| | - Shiladitya Ghosh
- Chemical Engineering Department, Jadavpur University, Kolkata, India
| | - Dinabandhu Manna
- Chemical Engineering Department, Jadavpur University, Kolkata, India
| | - Ranjana Chowdhury
- Chemical Engineering Department, Jadavpur University, Kolkata, India
| |
Collapse
|
23
|
Choline chloride-based deep eutectic solvents as green extractant for the efficient extraction of 1-butanol or 2-butanol from azeotropic n-heptane + butanol mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Sangavai C, Chellapandi P. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids. J Basic Microbiol 2020; 60:882-893. [PMID: 32812241 DOI: 10.1002/jobm.202000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 11/07/2022]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyperammonia-producing anaerobe that catabolizes proteins and amino acids into organic solvents and volatile acids via the Stickland reactions. However, the specific growth rate and metabolic capability of this organism on proteins and amino acids are not yet known. Therefore, the present study was intended to evaluate its specific growth rate and metabolic potential on gelatin and amino acids in the experimental media. We carried out metabolic assay experiments to calculate its ability to utilize pure gelatin, single amino acids, and amino acid pairs at different growth phases. The results of this study show that complete assimilation of gelatin was achieved by its log-phase culture. The subsequent fermentation of amino acids was much faster than gelatin hydrolysis. The rate of gelatin degradation was associated with the growth and catabolic rates of this organism. Many amino acids were not assimilated completely for its growth and energy conservation. A log-phase culture of this organism preferably utilized l-cysteine, l-arginine, and l-serine, and released more fraction of ammonia. As shown by our analysis, the catabolic rates of these amino acids were determined by the rates of respective enzymes involved in amino acid catabolic pathways and feedback repression of ammonia. The growth kinetic data indicated that at the initial growth stage, a metabolic shift in its solventogenesis and acidogenesis phases was associated with catabolism of certain amino acids. Thus, the results of this study provide a new insight to exploit its log-phase culture as a starter for the production of biofuel components from gelatin processing industries.
Collapse
Affiliation(s)
- Chinnadurai Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Paulchamy Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
25
|
Gehrmann S, Tenhumberg N. Production and Use of Sustainable C2‐C4 Alcohols – An Industrial Perspective. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefan Gehrmann
- thyssenkrupp Industrial Solutions Friedrich-Uhde-Straße 15 44141 Dortmund Germany
| | - Nils Tenhumberg
- thyssenkrupp Industrial Solutions Friedrich-Uhde-Straße 15 44141 Dortmund Germany
| |
Collapse
|
26
|
Han S, Kim Y, Karanjikar M, San KY, Bennett GN. Genetic sensor-regulators functional in Clostridia. J Ind Microbiol Biotechnol 2020; 47:609-620. [DOI: 10.1007/s10295-020-02303-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
Abstract
This study addressed the functionality of genetic circuits carrying natural regulatory elements of Clostridium acetobutylicum ATCC 824 in the presence of the respective inducer molecules. Specifically, promoters and their regulators involved in diverse carbon source utilization were characterized using mCherryOpt or beta-galactosidase as a reporter. Consequently, most of the genetic circuits tested in this study were functional in Clostridium acetobutylicum ATCC 824 in the presence of an inducer, leading to the expression of reporter proteins. These genetic sensor-regulators were found to be transferable to another Clostridium species, such as Clostridium beijerinckii NCIMB 8052. The gradual expression of reporter protein was observed as a function of the carbohydrates of interest. A xylose-inducible promoter allows a titratable and robust expression of a reporter protein with stringency and efficacy. This xylose-inducible circuit was seen to enable induction of the expression of reporter proteins in the presence of actual sugar mixtures incorporated in woody hydrolysate wherein glucose and xylose are present as predominant carbon sources.
Collapse
Affiliation(s)
- SongI Han
- grid.21940.3e 0000 0004 1936 8278 Department of Bioengineering Rice University 77005 Houston TX USA
| | - Younghwan Kim
- grid.427405.0 Technology Holding LLC 84119 West Valley City UT USA
| | | | - Ka-Yiu San
- grid.21940.3e 0000 0004 1936 8278 Department of Bioengineering Rice University 77005 Houston TX USA
- grid.21940.3e 0000 0004 1936 8278 Department of Chemical and Biomolecular Engineering Rice University 77005 Houston TX USA
| | - George N Bennett
- grid.21940.3e 0000 0004 1936 8278 Department of Chemical and Biomolecular Engineering Rice University 77005 Houston TX USA
- grid.21940.3e 0000 0004 1936 8278 Department of BioSciences Rice University 77005 Houston TX USA
| |
Collapse
|
27
|
Scholten PBV, Moatsou D, Detrembleur C, Meier MAR. Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromol Rapid Commun 2020; 41:e2000266. [PMID: 32686239 DOI: 10.1002/marc.202000266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Indexed: 12/14/2022]
Abstract
The recent focus of media and governments on renewability, green chemistry, and circular economy has led to a surge in the synthesis of renewable monomers and polymers. In this review, focussing on renewable monomers for reversible deactivation radical polymerizations (RDRP), it is highlighted that for the majority of the monomers and polymers reported, the claim to renewability is not always accurate. By closely examining the sustainability of synthetic routes and the renewability of starting materials, fully renewable monomers are identified and discussed in terms of sustainability, polymerization behavior, and properties obtained after polymerization. The holistic discussion considering the overall preparation process of polymers, that is, monomer syntheses, origin of starting materials, solvents used, the type of RDRP technique utilized, and the purification method, allows to highlight certain topics which need to be addressed in order to progress toward not only (partially) renewable, but sustainable monomers and polymers using RDRPs.
Collapse
Affiliation(s)
- Philip B V Scholten
- Center for Education and Research on Macromolecules, CESAM Research Unit, Department of Chemistry, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium.,Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany
| | - Dafni Moatsou
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, Department of Chemistry, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
| | - Michael A R Meier
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany.,Laboratory of Applied Chemistry, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
28
|
Zielinski D, Fraczyk J, Debowski M, Zielinski M, Kaminski ZJ, Kregiel D, Jacob C, Kolesinska B. Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage. Molecules 2020; 25:molecules25081790. [PMID: 32295155 PMCID: PMC7221910 DOI: 10.3390/molecules25081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Algae are employed commonly in cosmetics, food and pharmaceuticals, as well as in feed production and biorefinery processes. In this study, post-fermentation leachate from a biogas plant which exploits stillage and maize silage was utilized as a culture medium for Chlorella vulgaris. The content of polyphenols in hydrophilic extracts of the Chlorella vulgaris biomass was determined, and the extracts were evaluated for their antioxidant activity (DPPH assay), antibacterial activity (against Escherichia coli, Lactobacillusplantarum, Staphylococcus aureus, Staphylococcus epidermidis) and antifungal activity (against Aspergillus niger, Candida albicans, Saccharomyces cerevisiae). The use of the post-fermentation leachate was not found to affect the biological activity of the microalgae. The aqueous extract of Chlorella vulgaris biomass was also observed to exhibit activity against nematodes. The results of this study suggest that Chlorella vulgaris biomass cultured on post-fermentation leachate from a biogas plant can be successfully employed as a source of natural antioxidants, food supplements, feed, natural antibacterial and antifungal compounds, as well as in natural methods of plant protection.
Collapse
Affiliation(s)
- Dariusz Zielinski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (D.Z.); (J.F.); (Z.J.K.)
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (D.Z.); (J.F.); (Z.J.K.)
| | - Marcin Debowski
- Department of Environmental Engineering, Institute of Engineering and Environmental Protection, University of Warmia and Mazury in Olsztyn, Warszawska 117 a, 10-720 Olsztyn, Poland; (M.D.); (M.Z.)
| | - Marcin Zielinski
- Department of Environmental Engineering, Institute of Engineering and Environmental Protection, University of Warmia and Mazury in Olsztyn, Warszawska 117 a, 10-720 Olsztyn, Poland; (M.D.); (M.Z.)
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (D.Z.); (J.F.); (Z.J.K.)
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (D.Z.); (J.F.); (Z.J.K.)
- Correspondence: ; Tel.: +48-42-631-3162
| |
Collapse
|
29
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
30
|
Navas MB, Ruggera JF, Lick ID, Casella ML. A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0291-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThis paper describes the preparation and characterization of MgO and ZnO-based catalysts, pure and mixed in different proportions, supported on γ-Al2O3. Their catalytic performance was studied in the transesterification of soybean oil and castor oil with methanol and butanol, attempting to produce biodiesel. XRD (X-ray diffraction), SEM–EDS (scanning electron microscopy–energy dispersive X-ray spectroscopy), CO2-adsorption and N2-adsorption allowed characterizing the prepared catalysts. The characterization results were in all cases consistent with mesoporous solids with high specific surface area. All the catalysts exhibited good results, especially in the transesterification of castor oil using butanol. For this reaction, the reuse was tested, maintaining high FABE (fatty acid butyl esters) yields after four cycles. This good performance can be attributed to the basic properties of the Mg species, and simultaneously, to the amphoteric properties of ZnO, which allow both triglycerides and free fatty acids to be converted into esters. Using these catalysts, it is possible to obtain second-generation biodiesel, employing castor oil, a raw material that does not compete with the food industry. In addition, butanol can be produced from renewable biomass.
Collapse
|
31
|
Calcagnile M, Tredici SM, Talà A, Alifano P. Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants. INSECTS 2019; 10:E441. [PMID: 31817999 PMCID: PMC6955855 DOI: 10.3390/insects10120441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
A peculiar feature of all living beings is their capability to communicate. With the discovery of the quorum sensing phenomenon in bioluminescent bacteria in the late 1960s, it became clear that intraspecies and interspecies communications and social behaviors also occur in simple microorganisms such as bacteria. However, at that time, it was difficult to imagine how such small organisms-invisible to the naked eye-could influence the behavior and wellbeing of the larger, more complex and visible organisms they colonize. Now that we know this information, the challenge is to identify the myriad of bacterial chemical signals and communication networks that regulate the life of what can be defined, in a whole, as a meta-organism. In this review, we described the transkingdom crosstalk between bacteria, insects, and plants from an ecological perspective, providing some paradigmatic examples. Second, we reviewed what is known about the genetic and biochemical bases of the bacterial chemical communication with other organisms and how explore the semiochemical potential of a bacterium can be explored. Finally, we illustrated how bacterial semiochemicals managing the transkingdom communication may be exploited from a biotechnological point of view.
Collapse
Affiliation(s)
| | | | | | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.C.); (S.M.T.); (A.T.)
| |
Collapse
|
32
|
Effect of Composition of Mg-Al-Oxide Systems on their Catalytic Properties in the Production of 2-Ethyl-1-Hexanol in Vapor-Phase Condensation of 1-Butanol in a Flow System. THEOR EXP CHEM+ 2019. [DOI: 10.1007/s11237-019-09626-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis. Processes (Basel) 2019. [DOI: 10.3390/pr7100667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements for product purification. In the first scenario where the product titer was 22 g/L, the energy demand for downstream processing was 15.8 MJ/L isobutanol and the unit production cost of isobutanol was $2.24/L. The integrated product removal by vacuum stripping implemented in the second scenario was assumed to improve the isobutanol titer to 50 g/L. In this case, the energy demand for the product removal (electricity) and downstream processing were 1.8 MJ/L isobutanol and 10 MJ/L isobutanol, respectively, and the unit production cost was reduced to $1.42/L. The uncertainty associated with the choice of modeling and economic parameters was investigated by Monte Carlo simulation sensitivity analysis.
Collapse
|
34
|
Vlasenko NV, Kyriienko PI, Yanushevska OI, Valihura KV, Soloviev SO, Strizhak PE. The Effect of Ceria Content on the Acid–Base and Catalytic Characteristics of ZrO2–CeO2 Oxide Compositions in the Process of Ethanol to n-Butanol Condensation. Catal Letters 2019. [DOI: 10.1007/s10562-019-02937-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Dos Santos Vieira CF, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. BIORESOURCE TECHNOLOGY 2019; 287:121425. [PMID: 31085056 DOI: 10.1016/j.biortech.2019.121425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Production of butanol for fuel via the conventional Acetone-Butanol-Ethanol fermentation has been considered economically risky because of a potential oversupply of acetone. Alternatively, acetone is converted into isopropanol by specific solventogenic Clostridium species in the Isopropanol-Butanol-Ethanol (IBE) fermentation. This route, although less efficient, has been gaining attention because IBE mixtures are a potential fuel. The present work is dedicated to reviewing past and recent advances in microorganisms, feedstock, and fermentation equipment for IBE production. In our analysis we demonstrate the importance of novel engineered IBE-producing Clostridium strains and cell retention systems to decrease the staggering number of fermentation tanks required by IBE plants equipped with conventional technology. We also summarize the recent progress on recovery techniques integrated with fermentation, especially gas stripping. In addition, we assessed ongoing pilot-plant efforts that have been enabling IBE production from woody feedstock.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
36
|
Sangavai C, Chellapandi P. A metabolic study to decipher amino acid catabolism-directed biofuel synthesis in Acetoanaerobium sticklandii DSM 519. Amino Acids 2019; 51:1397-1407. [PMID: 31471743 DOI: 10.1007/s00726-019-02777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography-mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone-butanol-ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.
Collapse
Affiliation(s)
- C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
37
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
38
|
Fairhurst NWG, Harper RA, Smith HK, Speight LC, Clements JS, Jenkinson ER. Engineering solventogenic clostridia for commercial production of bio‐chemicals. ENGINEERING BIOLOGY 2019. [DOI: 10.1049/enb.2019.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Rachel A. Harper
- Green Biologics Ltd, R&D labs 154AH Brook Drive, Milton Park Abingdon OX14 4SD UK
| | - Holly K. Smith
- Green Biologics Ltd, R&D labs 154AH Brook Drive, Milton Park Abingdon OX14 4SD UK
| | - Lee C. Speight
- Green Biologics Inc. 800 E. Leigh St, Lab 56 Richmond VA 23219 USA
| | | | | |
Collapse
|