1
|
Chodkowski M, Terpiłowski K, Románszki L, Klébert S, Mohai M, Károly Z. Effect of Non-Thermal Sulfur Hexafluoride Cold Plasma Modification on Surface Properties of Polyoxymethylene. Chemphyschem 2024; 25:e202300709. [PMID: 38548684 DOI: 10.1002/cphc.202300709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/27/2024] [Indexed: 05/24/2024]
Abstract
X-ray photoelectron spectroscopy was employed to reveal the differences in the chemical structure of the topmost layer after plasma modification. It was found out that changes in the surface properties of the polymer could be observed even after 20 seconds of treatment. The surface becomes hydrophobic or superhydrophobic, with the water contact angles up to 160 degrees. Morphological changes and increased roughness can be observed only in the nanoscale, whereas the structure seems to be unaffected in the microscale. As a result of plasma modification a permanent hydrophobic effect was obtained on the polyoxymethylene surface.
Collapse
Affiliation(s)
- Michał Chodkowski
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Słlodowska University in Lublin, pl. Marii Curie-Skłodowskiej 3, 20-031, Lublin, Poland
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
| | - Konrad Terpiłowski
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Słlodowska University in Lublin, pl. Marii Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - Loránd Románszki
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H 1117, Budapest, Hungary
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H 1117, Budapest, Hungary
| | - Miklós Mohai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H 1117, Budapest, Hungary
| | - Zoltán Károly
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H 1117, Budapest, Hungary
| |
Collapse
|
2
|
Wu Y, Wang T, Gao J, Zhang L, Fay JDB, Hirth S, Hankett J, Chen Z. Molecular Behavior of 1K Polyurethane Adhesive at Buried Interfaces: Plasma Treatment, Annealing, and Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3273-3285. [PMID: 36808974 DOI: 10.1021/acs.langmuir.2c03084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-part (1K) polyurethane (PU) adhesive has excellent bulk strength and environmental resistance. It is therefore widely used in many fields, such as construction, transportation, and flexible lamination. However, when contacting non-polar polymer materials, the poor adhesion of 1K PU adhesive may not be able to support its outdoor applications. To solve this problem, plasma treatment of the non-polar polymer surface has been utilized to improve adhesion between the polymer and 1K PU adhesive. The detailed mechanisms of adhesion enhancement of the 1K PU adhesive caused by plasma treatment on polymer substrates have not been studied extensively because adhesion is a property of buried interfaces which are difficult to probe. In this study, sum frequency generation (SFG) vibrational spectroscopy was used to investigate the buried PU/polypropylene (PP) interfaces in situ nondestructively. Fourier-transform infrared spectroscopy, the X-ray diffraction technique, and adhesion tests were used as supplemental methods to SFG in the study. The 1K PU adhesive is a moisture-curing adhesive and usually needs several days to be fully cured. Here, time-dependent SFG experiments were conducted to monitor the molecular behaviors at the buried 1K PU adhesive/PP interfaces during the curing process. It was found that the PU adhesives underwent rearrangement during the curing process with functional groups gradually becoming ordered at the interface. Stronger adhesion between the plasma-treated PP substrate and the 1K PU adhesive was observed, which was achieved by the interfacial chemical reactions and a more rigid interface. Annealing the samples increased the reaction speed and enhanced the bulk PU strength with higher crystallinity. In this research, molecular mechanisms of adhesion enhancement of the 1K PU adhesive caused by the plasma treatment on PP and by annealing the PU/PP samples were elucidated.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianle Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Zhang
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Jonathan D B Fay
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sabine Hirth
- BASF SE, RAA/OS-B007, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Vatanpour V, Naziri Mehrabani SA, Safarpour M, Ganjali MR, Habibzadeh S, Koyuncu I. Fabrication of the PES Membrane Embedded with Plasma-Modified Zeolite at Different O 2 Pressures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9892-9905. [PMID: 36776106 DOI: 10.1021/acsami.2c22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this research, the non-thermal glow discharge plasma process was implemented to modify the surface of natural clinoptilolite zeolite before incorporation into the polyethersulfone (PES) membrane. The influence of plasma gas pressure variation on the fouling resistance and separation performance of the prepared membranes was studied. Fourier transform infrared, field emission scanning electron microscopy, and X-ray diffraction analyses of the unmodified and modified clinoptilolites revealed the Si-OH-Al bond's development during plasma treatment and the change in surface characteristics. In terms of performance, increasing the plasma gas pressure during clinoptilolite treatment resulted in the twofold enhancement of water flux from 91.2 L/m2 h of bare PES to 188 L/m2 h of the membrane containing plasma-treated clinoptilolite at 1.0 Torr pressure. Meanwhile, the antifouling behavior of membranes was improved by introducing more hydrophilic functional groups derived from the plasma treatment process. Additionally, the enhanced dye separation of membranes was indicated by the separation of 99 and 94% of reactive green 19 and reactive red 195, respectively.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Mahdie Safarpour
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
4
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
5
|
Asl PJ, Rajulapati V, Gavahian M, Kapusta I, Putnik P, Mousavi Khaneghah A, Marszałek K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Hage M, Khelissa S, Akoum H, Chihib NE, Jama C. Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl Microbiol Biotechnol 2022; 106:81-100. [PMID: 34889984 PMCID: PMC8661349 DOI: 10.1007/s00253-021-11715-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/28/2022]
Abstract
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, researchers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including physico-chemical modification and application of cold plasma technologies, were also presented. KEY POINTS: • Factors surrounding pathogenic bacteria influence biofilm development. • Controlling bacterial adhesion prevents biofilm formation. • Materials can be coated via cold plasma to inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Mayssane Hage
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Simon Khelissa
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Hikmat Akoum
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Nour-Eddine Chihib
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Charafeddine Jama
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France.
| |
Collapse
|
7
|
Ullah MH, Akther H, Rahman MM, Foisal ABM, Hasan MM, Amir-Al Zumahi SM, Amri A. Surface modification and improvements of wicking properties and dyeability of grey jute-cotton blended fabrics using low-pressure glow discharge air plasma. Heliyon 2021; 7:e07893. [PMID: 34504964 PMCID: PMC8411235 DOI: 10.1016/j.heliyon.2021.e07893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023] Open
Abstract
Herein, we reported the improvements of wicking properties and dyeability of the jute-cotton blended (40:60) fabrics due to the effect of low-pressure glow discharge (LPGD) air plasma under selected exposure times. The microscopic features, functional groups, wettability, contact angles, wetting area, wicking rates, and reflectance values of the jute-cotton blended fabrics were analyzed using numerous experimental techniques. The scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques were used to investigate the morphological and compositional modifications of plasma-treated jute blended cotton fabrics. The compositional analysis confirmed various functional groups such as –OH, C–O, and COO− on the surface of jute blended cotton fabrics. The average pore radii and diffusion coefficient were calculated by using the modified Lucas-Washburn equation. The plasma-treated fabrics were shown to have an average pore radius of 0.93, 1.46, 2.26, and 4.8 μm under treatment time of 5,10,15, and 20 min. Nearly 50% reduction of contact angle was observed after a plasma treatment time of 20 min. The absorption to scattered ratio, K/S (determined using Kubel-Munk model) of the colored fabrics with 5 min pre-treated plasma was 6.47, although it was raised up to 8.51 after 20 min of pre-treatment. A reactive dye, Bezaktiv Red S–3B, was used for the dyeability test, and our findings showed that the dyeability and the wettability of the fabric were substantially enhanced with the treatment time of LPGD air plasma. Among the samples, only 10 min plasma pre-treated colored fabric exhibited a color difference of less than one compared to the standard one. The wicking properties and dyeability of the jute-cotton blended (40:60) fabrics were studied. 50% reduction of contact angle was observed after a plasma treatment time of 20 min. The presence of –OH, C–O, and COO− functional groups on the surface of jute blended cotton fabrics was seen. The absorption to scattered ratio, K/S of the fabrics was increased with the increase in plasma treated times. The dyeability and wettability of the fabric enhanced with the treatment times of LPGD air plasma.
Collapse
Affiliation(s)
- M Hedayet Ullah
- Department of Physics, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Hasina Akther
- Department of Physics, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - M Mahbubur Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - A B M Foisal
- Department of Textile Engineering, Southeast University, Dhaka, Bangladesh
| | - M Mahmud Hasan
- Materials Science Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - S M Amir-Al Zumahi
- Department of Physics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.,Bangladesh Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, 1349, Bangladesh
| | - Amun Amri
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| |
Collapse
|
8
|
Primc G. Recent Advances in Surface Activation of Polytetrafluoroethylene (PTFE) by Gaseous Plasma Treatments. Polymers (Basel) 2020; 12:polym12102295. [PMID: 33036423 PMCID: PMC7601227 DOI: 10.3390/polym12102295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorinated polymers are renowned for their chemical inertness and thus poor wettability and adhesion of various coatings. Apart from chemical methods employing somewhat toxic primers, gaseous plasma treatment is a popular method for the modification of surface properties. Different authors have used different plasmas, and the resultant surface finish spans between super-hydrophobic and super-hydrophilic character. Some authors also reported the hydrophobic recovery. The review of recent papers is presented and discussed. Correlations between plasma and/or discharge parameters and the surface finish are drawn and the most important conclusions are summarized. The concentration of oxygen in the surface film as probed by X-ray photoelectron spectroscopy is inversely dependent on the concentration of oxygen in gaseous plasma. The predominant mechanism leading to hydrophilic surface finish is bond scission by deep ultraviolet radiation rather than functionalization with reactive oxygen species.
Collapse
Affiliation(s)
- Gregor Primc
- Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Nascimento L, Gasi F, Landers R, da Silva Sobrinho A, Aragão E, Fraga M, Petraconi G, Chiappim W, Pessoa R. Physicochemical Studies on the Surface of Polyamide 6.6 Fabrics Functionalized by DBD Plasmas Operated at Atmospheric and Sub-Atmospheric Pressures. Polymers (Basel) 2020; 12:E2128. [PMID: 32961866 PMCID: PMC7569831 DOI: 10.3390/polym12092128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
This work proposes the use of a dielectric barrier discharge (DBD) reactor operating at atmospheric pressure (AP) using air and sub-atmospheric pressure (SAP) using air or argon to treat polyamide 6.6 (PA6.6) fabrics. Here, plasma dosages corresponding to 37.5 kW·min·m-2 for AP and 7.5 kW·min·m-2 for SAP in air or argon were used. The hydrophilicity aging effect property of untreated and DBD-treated PA6.6 samples was evaluated from the apparent contact angle. The surface changes in physical microstructure were studied by field emission scanning electron microscopy (FE-SEM). To prove the changes in chemical functional groups in the fibers, Fourier transform infrared spectroscopy (FTIR) was used, and the change in surface bonds was evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). In addition, the whiteness effect was investigated by the color spectrophotometry (Datacolor) technique. The results showed that the increase in surface roughness by the SAP DBD treatment contributed to a decrease in and maintenance of the hydrophilicity of PA6.6 fabrics for longer. The SAP DBD in air treatment promoted an enhancement of the aging effect with a low plasma dosage (5-fold reduction compared with AP DBD treatment). Finally, the SAP DBD treatment using argon functionalizes the fabric surface more efficiently than DBD treatments in air.
Collapse
Affiliation(s)
- Larissa Nascimento
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos 12228-900, Brazil; (A.d.S.S.); (G.P.)
| | - Fernando Gasi
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09210-170, Brazil;
| | - Richard Landers
- Instituto de Física Gleb Wataghin (IFGW), Universidade Estadual Paulista (Unicamp), Campinas 13083-859, Brazil;
| | - Argemiro da Silva Sobrinho
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos 12228-900, Brazil; (A.d.S.S.); (G.P.)
| | - Eduardo Aragão
- Campus Integrado de Manufatura e Tecnologias, SENAI Cimatec, Salvador 41650-010, Brazil;
| | - Mariana Fraga
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (Unifesp), São José dos Campos 12231-280, Brazil;
| | - Gilberto Petraconi
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos 12228-900, Brazil; (A.d.S.S.); (G.P.)
| | - William Chiappim
- i3N, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro 3810-193, Portugal
| | - Rodrigo Pessoa
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos 12228-900, Brazil; (A.d.S.S.); (G.P.)
| |
Collapse
|
10
|
Šrámková P, Zahoranová A, Kelar J, Kelar Tučeková Z, Stupavská M, Krumpolec R, Jurmanová J, Kováčik D, Černák M. Cold atmospheric pressure plasma: simple and efficient strategy for preparation of poly(2-oxazoline)-based coatings designed for biomedical applications. Sci Rep 2020; 10:9478. [PMID: 32528062 PMCID: PMC7289869 DOI: 10.1038/s41598-020-66423-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
Poly(2-oxazolines) (POx) are an attractive material of choice for biocompatible and bioactive coatings in medical applications. To prepare POx coatings, the plasma polymerization represents a fast and facile approach that is surface-independent. However, unfavorable factors of this method such as using the low-pressure regimes and noble gases, or poor control over the resulting surface chemistry limit its utilization. Here, we propose to overcome these drawbacks by using well-defined POx-based copolymers prepared by living cationic polymerization as a starting material. Chemically inert polytetrafluoroethylene (PTFE) is selected as a substrate due to its beneficial features for medical applications. The deposited POx layer is additionally post-treated by non-equilibrium plasma generated at atmospheric pressure. For this purpose, diffuse coplanar surface barrier discharge (DCSBD) is used as a source of "cold" homogeneous plasma, as it is operating at atmospheric pressure even in ambient air. Prepared POx coatings possess hydrophilic nature with an achieved water contact angle of 60°, which is noticeably lower in comparison to the initial value of 106° for raw PTFE. Moreover, the increased fibroblasts adhesion in comparison to raw PTFE is achieved, and the physical and biological properties of the POx-modified surfaces remain stable for 30 days.
Collapse
Affiliation(s)
- Petra Šrámková
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| | - Anna Zahoranová
- Dapartment for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41, Bratislava, Slovakia
| | - Jakub Kelar
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Zlata Kelar Tučeková
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Monika Stupavská
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Richard Krumpolec
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Jana Jurmanová
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Dušan Kováčik
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Mirko Černák
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
11
|
Románszki L, Klébert S, Héberger K. Estimating Nanoscale Surface Roughness of Polyethylene Terephthalate Fibers. ACS OMEGA 2020; 5:3670-3677. [PMID: 32118182 PMCID: PMC7045555 DOI: 10.1021/acsomega.9b04211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Quantitation of surface roughness is difficult, if subtle, but significant differences cause an uncommon variance. We used atomic force microscopy to measure the surface roughness of polyethylene terephthalate (PET) fibers before and after a 30 s plasma treatment of 300 W. Samples were measured multiple times at different locations, in four scan sizes. The surface roughness was expressed in terms of nine roughness parameters. Despite the large number of data, simple statistics was not able to detect significant differences in roughness before and after plasma treatment. A factorial analysis of variance (ANOVA) of the normalized data and a sum of ranking differences analysis using four types of data preprocessing and their factorial ANOVA confirmed that (i) the plasma treatment had roughened the PET fiber surface; (ii) the roughness increases with the scanned area in the measured range; and (iii) what the best roughness parameters are in discriminating between surfaces before and after treatment. Although the compared roughness estimators were on different scales, a roughness estimation of the nanoscale surfaces was feasible, where other methods fail. The presented methodology can be applied widely and unambiguously for highly different method comparison tasks.
Collapse
Affiliation(s)
- Loránd Románszki
- Functional
Interfaces Research Group, Institute of Materials and Environmental
Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Szilvia Klébert
- Plasma
Chemistry Research Group, Institute of Materials and Environmental
Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Károly Héberger
- Plasma
Chemistry Research Group, Institute of Materials and Environmental
Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
12
|
Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|