1
|
de Souza AM, Dantas MRDN, Secundo EL, Silva EDC, Silva PF, Moreira SMG, de Medeiros SRB. Are hydroxyapatite-based biomaterials free of genotoxicity? A systematic review. CHEMOSPHERE 2024; 352:141383. [PMID: 38360416 DOI: 10.1016/j.chemosphere.2024.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in clinical applications and pharmaceuticals. The literature on HA-based materials studies is focused on chemical characterization and biocompatibility. Generally, biocompatibility is analyzed through adhesion, proliferation, and differentiation assays. Fewer studies are looking for genotoxic events. Thus, although HA-based biomaterials are widely used as biomedical devices, there is a lack of literature regarding their genotoxicity. This systematic review was carried out following the PRISMA statement. Specific search strategies were developed and performed in four electronic databases (PubMed, Science Direct, Scopus, and Web of Science). The search used "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND genotoxicity OR genotoxic OR DNA damage" and "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND mutagenicity OR mutagenic OR DNA damage" as keywords and articles published from 2000 to 2022, after removing duplicate studies and apply include and exclusion criteria, 53 articles were identified and submitted to a qualitative descriptive analysis. Most of the assays were in vitro and most of the studies did not show genotoxicity. In fact, a protective effect was observed for hydroxyapatites. Only 20 out of 71 tests performed were positive for genotoxicity. However, no point mutation-related mutagenicity was observed. As the genotoxicity of HA-based biomaterials observed was correlated with its nanostructured forms as needles or rods, it is important to follow their effect in chronic exposure to guarantee safe usage in humans.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Estefânia Lins Secundo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila Fernandes Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
2
|
Li TT, Wang S, Li J, Zhang Y, Liu X, Liu L, Peng HK, Ren HT, Ling L, Lin JH, Lou CW. Braided scaffolds with polypyrrole/polydopamine/hydroxyapatite coatings with electrical conductivity and osteogenic properties for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2498-2515. [PMID: 37795599 DOI: 10.1080/09205063.2023.2265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
When impaired bones are grafted with bone scaffolds, the behaviors of osteoblast are dependent on the implant materials and surface morphology. To this end, we modulated the surface morphology of scaffolds that promote cell growth. In this study, ice-template and spraying method methods are employed to coat different proportions of PDA and PPy over the PLA/PVA weaving scaffolds, after which HA is Coated over via the electrochemical deposition, forming weaving scaffolds with electrically conductive PDA/PPy/HA coating. The test results indicate that with a PPy/PDA concentration ratio is 30, the PPy particles are more uniformly distributed on the fiber surface. The scaffolds are wrapped in a HA coating layer with a high purity, and calcium and phosphorus elements are evenly dispersed with a Ca/P ratio being 1.69. Owing to the synergistic effect between PDA and PPy coating, the scaffolds demonstrate excellent electrochemical stability and electrochemical activity. The biological activity of the scaffold increased to 274.66% under electrical stimulation. The new thinking proposed by this study extends the worth of applying textile structure to the medical field, the application of which highly increases the prospect of bone tissue engineering.
Collapse
Affiliation(s)
- Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Shiqi Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jiaxin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Ying Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Liyan Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hao-Kai Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Lei Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
3
|
Aryloxy ‘biometal’ complexes as efficient catalysts for the synthesis of poly(butylene adipate terephthalate). MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
The Use of Branching Agents in the Synthesis of PBAT. Polymers (Basel) 2022; 14:polym14091720. [PMID: 35566889 PMCID: PMC9100140 DOI: 10.3390/polym14091720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Biodegradable polyesters represent an advanced alternative to polyolefin plastics in various applications. Polybutylene adipate terephthalate (PBAT) can compete with polyolefins in terms of their mechanical characteristics and melt processing conditions. The properties of PBAT depend on the molecular weight, dispersity, and architecture of the copolymer. Long-chain branching (LCB) of the PBAT backbone is an efficient method for the improvement of the copolymer characteristics. In the present work, we studied branching agents (BAs) 1–7 of different structures in the two-stage polycondensation of 1,4-butanediol, dimethyl terephthalate, and adipic acid and investigated the composition and melt rheology of the copolymers. According to the results of the research, 1,1,1-tris(hydroxymethyl)ethane 2 and 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid 5 outperformed glycerol 1 as BAs in terms of shear thinning behavior and viscoelasticity.
Collapse
|
5
|
Nanohydroxyapatite Electrodeposition onto Electrospun Nanofibers: Technique Overview and Tissue Engineering Applications. Bioengineering (Basel) 2021; 8:bioengineering8110151. [PMID: 34821717 PMCID: PMC8615206 DOI: 10.3390/bioengineering8110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nanocomposite scaffolds based on the combination of polymeric nanofibers with nanohydroxyapatite are a promising approach within tissue engineering. With this strategy, it is possible to synthesize nanobiomaterials that combine the well-known benefits and advantages of polymer-based nanofibers with the osteointegrative, osteoinductive, and osteoconductive properties of nanohydroxyapatite, generating scaffolds with great potential for applications in regenerative medicine, especially as support for bone growth and regeneration. However, as efficiently incorporating nanohydroxyapatite into polymeric nanofibers is still a challenge, new methodologies have emerged for this purpose, such as electrodeposition, a fast, low-cost, adjustable, and reproducible technique capable of depositing coatings of nanohydroxyapatite on the outside of fibers, to improve scaffold bioactivity and cell–biomaterial interactions. In this short review paper, we provide an overview of the electrodeposition method, as well as a detailed discussion about the process of electrodepositing nanohydroxyapatite on the surface of polymer electrospun nanofibers. In addition, we present the main findings of the recent applications of polymeric micro/nanofibrous scaffolds coated with electrodeposited nanohydroxyapatite in tissue engineering. In conclusion, comments are provided about the future direction of nanohydroxyapatite electrodeposition onto polymeric nanofibers.
Collapse
|
6
|
Basurto IM, Mora MT, Gardner GM, Christ GJ, Caliari SR. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering. Biomater Sci 2021; 9:4040-4053. [PMID: 33899845 DOI: 10.1039/d1bm00147g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle is characterized by its three-dimensional (3D) anisotropic architecture composed of highly aligned and electrically-excitable muscle fibers that enable normal movement. Biomaterial-based tissue engineering approaches to repair skeletal muscle are limited due to difficulties combining 3D structural alignment (to guide cell/matrix organization) and electrical conductivity (to enable electrically-excitable myotube assembly and maturation). In this work we successfully produced aligned and electrically conductive 3D collagen scaffolds using a freeze-drying approach. Conductive polypyrrole (PPy) nanoparticles were synthesized and directly mixed into a suspension of type I collagen and chondroitin sulfate followed by directional lyophilization. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and confocal microscopy showed that directional solidification resulted in scaffolds with longitudinally aligned pores with homogeneously-distributed PPy content. Chronopotentiometry verified that PPy incorporation resulted in a five-fold increase in conductivity compared to non-PPy-containing collagen scaffolds without detrimentally affecting myoblast metabolic activity. Furthermore, the aligned scaffold microstructure provided contact guidance cues that directed myoblast growth and organization. Incorporation of PPy also promoted enhanced myotube formation and maturation as measured by myosin heavy chain (MHC) expression and number of nuclei per myotube. Together these data suggest that aligned and electrically conductive 3D collagen scaffolds could be useful for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - George J Christ
- Department of Biomedical Engineering, USA. and Department of Orthopedic Surgery, University of Virginia, USA
| | - Steven R Caliari
- Department of Biomedical Engineering, USA. and Department of Chemical Engineering, USA
| |
Collapse
|
7
|
de Oliveira JPJ, Estrela FN, Rodrigues ASDL, Guimarães ATB, Rocha TL, Malafaia G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124152. [PMID: 33068943 DOI: 10.1016/j.jhazmat.2020.124152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The literature has largely shown the toxicity of petroleum-based PLA biomicroplastics (PLABioMPs) and encouraged the production of alternative materials to replace their use, such as biopolymers. However, knowledge concerning the effects of biopolymers on aquatic organisms remains under development. The hypothesis that the acute exposure (five days) to polylactic acid (PLA) biopolymers may lead to behavioral and biochemical changes and to their accumulation in Danio rerio larvae was tested. Based on the results, PLA biomicroplastics (PLA BioMPs) at concentration of 3 and 9 mg/L decreased swimming distance and speed of larvae in the open field test. This outcome suggests effects on animals' locomotor and exploration activities. Larvae's longer immobility time and greater permanence in the peripheral zone of the apparatus is indicative of anxiety-like behavior caused by the exposure to PLA BioMPs. Zebrafish larvae accumulated PLA BioMPs and their acetylcholinesterase activity was inhibited by their presence, which reinforces the accumulative potential of biopolymers and their direct or indirect role as anxiogenic agents, even at sublethal concentrations. The decreased activity of acetylcholinesterase reinforces the neurotoxic action in groups exposed to PLA BioMPs. The current study has confirmed the initial hypothesis and is an insight about the toxicity of these biopolymers in D. rerio larvae, since it deepens the discussion about the environmental risk of these substances in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | | | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil.
| |
Collapse
|
8
|
Vasconcellos LMR, Santana-Melo GF, Silva E, Pereira VF, Araújo JCR, Silva ADR, Furtado ASA, Elias CDMV, Viana BC, Marciano FR, Lobo AO. Electrospun Poly(butylene-adipate-co-terephthalate)/Nano-hyDroxyapatite/Graphene Nanoribbon Scaffolds Improved the In Vivo Osteogenesis of the Neoformed Bone. J Funct Biomater 2021; 12:11. [PMID: 33562592 PMCID: PMC7931057 DOI: 10.3390/jfb12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Electrospun ultrathin fibrous scaffold filed with synthetic nanohydroxyapatite (nHAp) and graphene nanoribbons (GNR) has bioactive and osteoconductive properties and is a plausible strategy to improve bone regeneration. Poly(butylene-adipate-co-terephthalate) (PBAT) has been studied as fibrous scaffolds due to its low crystallinity, faster biodegradability, and good mechanical properties; however, its potential for in vivo applications remains underexplored. We proposed the application of electrospun PBAT with high contents of incorporated nHAp and nHAp/GNR nanoparticles as bone grafts. Ultrathin PBAT, PBAT/nHAp, and PBAT/nHAp/GNR fibers were produced using an electrospinning apparatus. The produced fibers were characterized morphologically and structurally using scanning electron (SEM) and high-resolution transmission electron (TEM) microscopies, respectively. Mechanical properties were analyzed using a texturometer. All scaffolds were implanted into critical tibia defects in rats and analyzed after two weeks using radiography, microcomputed tomography, histological, histomorphometric, and biomechanical analyses. The results showed through SEM and high-resolution TEM characterized the average diameters of the fibers (ranged from 0.208 µm ± 0.035 to 0.388 µm ± 0.087) and nHAp (crystallite around 0.28, 0.34, and 0.69 nm) and nHAp/GNR (200-300 nm) nanoparticles distribution into PBAT matrices. Ultrathin fibers were obtained, and the incorporated nHAp and nHAp/GNR nanoparticles were well distributed into PBAT matrices. The addition of nHAp and nHAp/GNR nanoparticles improved the elastic modulus of the ultrathin fibers compared to neat PBAT. High loads of nHAp/GNR (PBATnH5G group) improved the in vivo lamellar bone formation promoting greater radiographic density, trabecular number and stiffness in the defect area 2 weeks after implantation than control and PBAT groups.
Collapse
Affiliation(s)
- Luana Marotta Reis Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Gabriela F. Santana-Melo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Edmundo Silva
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Vanessa Fernandes Pereira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Juliani Caroline Ribeiro Araújo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | | | - André S. A. Furtado
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piaui, Teresina 64049-550, Brazil;
| | | | - Bartolomeu Cruz Viana
- Department of Physics, Federal University of Piaui, Teresina 64049-550, Brazil; (B.C.V.); (F.R.M.)
| | | | - Anderson Oliveira Lobo
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piaui, Teresina 64049-550, Brazil;
| |
Collapse
|
9
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|