Rossegger E, Strasser J, Höller R, Fleisch M, Berer M, Schlögl S. Wavelength Selective Multi-Material 3D Printing of Soft Active Devices Using Orthogonal Photoreactions.
Macromol Rapid Commun 2023;
44:e2200586. [PMID:
36107158 DOI:
10.1002/marc.202200586]
[Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Indexed: 01/26/2023]
Abstract
Orthogonal photoreactions provide a unique way to locally and independently control (thermo)mechanical properties and functionality of polymer networks simply by choice of the wavelength. Herein, a library of acrylate functional coumarin monomers is synthesized, which are cured by sequence-dependent wavelength orthogonality. In the presence of a long wavelength absorbing photoinitiator, the monomers undergo rapid curing by visible light induced radical chain growth polymerization. Subsequent irradiation with light in the UV-A region selectively initiates the [2+2] photocycloaddition of the coumarin chromophores, which is confirmed by FTIR and UV-vis experiments. Through a well-targeted design, acrylate-based and thiol-acrylate resin formulations are prepared, whose fast curing rate, low viscosity, and prolonged storage stability enable the one-step fabrication of multi-material structures by digital light processing (DLP) 3D printing. By using a dual-wavelength printer, which operates at two different wavelengths (405 and 365 nm), objects comprising soft (ε = 22%, σ = 7.5 MPa) and stiff (ε = 2%, σ = 8.3 MPa) domains are printed with a single resin vat. Along with tensile properties, the wavelength selective change in the network structure features a local control of the glass transition temperature (ΔTg = 17 °C) in the 3D-printed objects. Soft active devices are fabricated by dual-wavelength DLP 3D printing, with distinct domains having a higher Tg and the local programming of multi shapes is demonstrated.
Collapse