1
|
Malik S, Marchesan S. Growth, Properties, and Applications of Branched Carbon Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2728. [PMID: 34685169 PMCID: PMC8540255 DOI: 10.3390/nano11102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Nanomaterials featuring branched carbon nanotubes (b-CNTs), nanofibers (b-CNFs), or other types of carbon nanostructures (CNSs) are of great interest due to their outstanding mechanical and electronic properties. They are promising components of nanodevices for a wide variety of advanced applications spanning from batteries and fuel cells to conductive-tissue regeneration in medicine. In this concise review, we describe the methods to produce branched CNSs, with particular emphasis on the most widely used b-CNTs, the experimental and theoretical studies on their properties, and the wide range of demonstrated and proposed applications, highlighting the branching structural features that ultimately allow for enhanced performance relative to traditional, unbranched CNSs.
Collapse
Affiliation(s)
- Sharali Malik
- Karlsruhe Institute of Technology, Institute of Quantum Materials and Technology, Hermann-von-Helmholtz-Platz 1, 76131 Karlsruhe, Germany
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| |
Collapse
|
2
|
Laser Technology for the Formation of Bioelectronic Nanocomposites Based on Single-Walled Carbon Nanotubes and Proteins with Different Structures, Electrical Conductivity and Biocompatibility. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A laser technology for creating nanocomposites from alternating layers of albumin/collagen proteins with two types of single-walled carbon nanotubes (SWCNT) at concentrations of 0.001 and 0.01 wt.% was proposed. For this purpose, a setup with a diode laser (810 nm) and feedback system for controlling the temperature of the area affected by the radiation was developed. Raman spectroscopy was used to determine a decrease in the defectiveness of SWCNT with an increase in their concentration in the nanocomposite due to the formation of branched 3D networks with covalent bonds between nanotubes. It was revealed that adhesion of proteins to branched 3D networks from SWCNT occurred. The specific electrical conductivity of nanocomposites based on large SWCNT nanotubes was 3.2 and 4.3 S/m compared to that for nanocomposites based on small SWCNT with the same concentrations—1.1 and 1.8 S/m. An increase in the concentration and size of nanotubes provides higher porosity of nanocomposites. For small SWCNT-based nanocomposites, a significant number of mesopores up to 50 nm in size and the largest specific surface area and specific pore volume were found. Nanocomposites with small SWCNT (0.001 wt.%) provided the best cardiac fibroblast viability. Such technology can be potentially used to create bioelectronic components or scaffolds for heart tissue engineering.
Collapse
|
3
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
4
|
Gerasimenko AY, Zhurbina NN, Cherepanova NG, Semak AE, Zar VV, Fedorova YO, Eganova EM, Pavlov AA, Telyshev DV, Selishchev SV, Glukhova OE. Frame Coating of Single-Walled Carbon Nanotubes in Collagen on PET Fibers for Artificial Joint Ligaments. Int J Mol Sci 2020; 21:ijms21176163. [PMID: 32859107 PMCID: PMC7503285 DOI: 10.3390/ijms21176163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
The coating formation technique for artificial knee ligaments was proposed, which provided tight fixation of ligaments of polyethylene terephthalate (PET) fibers as a result of the healing of the bone channel in the short-term period after implantation. The coating is a frame structure of single-walled carbon nanotubes (SWCNT) in a collagen matrix, which is formed by layer-by-layer solidification of an aqueous dispersion of SWCNT with collagen during spin coating and controlled irradiation with IR radiation. Quantum mechanical method SCC DFTB, with a self-consistent charge, was used. It is based on the density functional theory and the tight-binding approximation. The method established the optimal temperature and time for the formation of the equilibrium configurations of the SWCNT/collagen type II complexes to ensure maximum binding energies between the nanotube and the collagen. The highest binding energies were observed in complexes with SWCNT nanometer diameter in comparison with subnanometer SWCNT. The coating had a porous structure-pore size was 0.5-6 μm. The process of reducing the mass and volume of the coating with the initial biodegradation of collagen after contact with blood plasma was demonstrated. This is proved by exceeding the intensity of the SWCNT peaks G and D after contact with the blood serum in the Raman spectrum and by decreasing the intensity of the main collagen bands in the SWCNT/collagen complex frame coating. The number of pores and their size increased to 20 μm. The modification of the PET tape with the SWCNT/collagen coating allowed to increase its hydrophilicity by 1.7 times compared to the original PET fibers and by 1.3 times compared to the collagen coating. A reduced hemolysis level of the PET tape coated with SWCNT/collagen was achieved. The SWCNT/collagen coating provided 2.2 times less hemolysis than an uncoated PET implant. MicroCT showed the effective formation of new bone and dense connective tissue around the implant. A decrease in channel diameter from 2.5 to 1.7 mm was detected at three and, especially, six months after implantation of a PET tape with SWCNT/collagen coating. MicroCT allowed us to identify areas for histological sections, which demonstrated the favorable interaction of the PET tape with the surrounding tissues. In the case of using the PET tape coated with SWCNT/collagen, more active growth of connective tissue with mature collagen fibers in the area of implantation was observed than in the case of only collagen coating. The stimulating effect of SWCNT/collagen on the formation of bone trabeculae around and inside the PET tape was evident in three and six months after implantation. Thus, a PET tape with SWCNT/collagen coating has osteoconductivity as well as a high level of hydrophilicity and hemocompatibility.
Collapse
Affiliation(s)
- Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
- Correspondence: (A.Y.G.); (O.E.G.); Tel.: +7-9267029778 (A.Y.G.)
| | - Natalia N. Zhurbina
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
| | - Nadezhda G. Cherepanova
- Department of Morphology and Veterinary Expertise, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya street 49, 127550 Moscow, Russia; (N.G.C.); (A.E.S.)
| | - Anna E. Semak
- Department of Morphology and Veterinary Expertise, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya street 49, 127550 Moscow, Russia; (N.G.C.); (A.E.S.)
| | - Vadim V. Zar
- Department of Traumatology and Orthopedics, M.F. Vladimirskii Moscow Regional Research and Clinical Institute, Shepkina street 61/2, 129110 Moscow, Russia;
| | - Yulia O. Fedorova
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Research Laboratory of Promising Processes, Scientific-Manufacturing Complex “Technological Centre”, 1-7 Shokin Square, 124498 Moscow, Russia
| | - Elena M. Eganova
- Micro- and Nanosystems Research and Development Department, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, 119991 Moscow, Russia; (E.M.E.); (A.A.P.)
| | - Alexander A. Pavlov
- Micro- and Nanosystems Research and Development Department, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, 119991 Moscow, Russia; (E.M.E.); (A.A.P.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
| | - Sergey V. Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
| | - Olga E. Glukhova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia
- Correspondence: (A.Y.G.); (O.E.G.); Tel.: +7-9267029778 (A.Y.G.)
| |
Collapse
|
5
|
Niamlaem M, Phuakkong O, Garrigue P, Goudeau B, Ravaine V, Kuhn A, Warakulwit C, Zigah D. Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23378-23387. [PMID: 32343544 DOI: 10.1021/acsami.0c01017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, bipolar electrochemistry is used to perform wireless indirect electrodeposition of two different polymer coatings on both sides of carbon nanotube arrays. Using a thermoresponsive hydrogel on one side and an inert insoluble polymer on the other side, it is possible to generate, in a single step, a nanoporous reservoir with Janus character closed on one side by a thermoresponsive membrane. The thermoresponsive polymer, poly(N-isopropylacrylamide) (pNIPAM), is generated by the local reduction of persulfate ions, which initiates radical polymerization of NIPAM. Electrophoretic paint (EP) is chosen as an inert polymer. It is deposited by precipitation because of a local decrease in pH during water oxidation. Both polymers can be deposited simultaneously on opposite sides of the bipolar electrode during the application of the electric field, yielding a double-modified Janus object. Moreover, the length and thickness of the polymer layers can be controlled by varying the electric field and the deposition time. This concept is applied to vertically aligned carbon nanotube arrays (VACNTs), trapped inside an anodic aluminum oxide membrane, which can further be used as a smart reservoir for chemical storage and release. A fluorescent dye is loaded in the VACNTs and its release is studied as a function of temperature. Low temperature, when the hydrogel layer is in the swollen state, allows diffusion of the molecule. Dye release occurs on the hydrogel-modified side of the VACNTs. At high temperatures, when the hydrogel layer is in the collapsed state, dye release is blocked because of the impermeability of the pNIPAM layer. This concept paves the way toward the design of advanced devices in the fields of drug storage and directed delivery.
Collapse
Affiliation(s)
- Malinee Niamlaem
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Oranit Phuakkong
- Division of Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, Suratthani 84100, Thailand
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Bertrand Goudeau
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Dodzi Zigah
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| |
Collapse
|