1
|
Braz EMA, Silva SCCC, Alves MMM, Carvalho FAA, Magalhães R, Osajima JA, Silva DA, Oliveira AL, Muniz EC, Silva-Filho EC. Chitosan/collagen biomembrane loaded with 2,3-dihydrobenzofuran for the treatment of cutaneous Leishmaniasis. Int J Biol Macromol 2024; 280:135995. [PMID: 39326592 DOI: 10.1016/j.ijbiomac.2024.135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, chitosan/collagen-based membranes loaded with 2,3-dihydrobenzofuran (2,3-DHB) were developed through a simple solvent-casting procedure for use in the treatment of cutaneous Leishmaniasis. The obtained membranes were characterized by elemental analysis, FTIR, TG, DSC, and XRD. Porosity, swelling, mechanical properties, hydrophilicity, and antioxidant activity were analyzed. In addition, assessment to the biocompatibility, through fibroblasts/keratinocytes and in vitro wound healing essays were performed. The obtained results show that the new 2,3-DHB loaded chitosan/collagen membrane presented high porosity and swelling capacity as well as maximum strength, hydrophilicity, and antioxidant activity higher in relation to the control. The tests of antileishmanial activity and the AFM images demonstrate great efficacy of inhibition growth of the parasite, superior to those from the standard therapeutic agent that is currently used: Amphotericin B. The new membranes are biocompatible and stimulated the proliferation of keratinocytes. SEM images clearly demonstrate that fibroblasts were able to adhere, maintained their characteristic morphology. The healing test evidenced that the membranes have adequate environment for promoting cell proliferation and growth. As the conventional treatments often use drugs with high toxicity, the as-developed new membranes proved to be excellent candidate to treat cutaneous Leishmaniasis and can be clearly indicated for further advanced studies in vivo.
Collapse
Affiliation(s)
- Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI 64770-000, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Josy Anteveli Osajima
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Edvani Curti Muniz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual de Maringá, Departamento de Química, Maringá, PR 87020-970, Brazil
| | - Edson Cavalcanti Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
2
|
Zhao S, Wang J, Zhu W. Controlled-Release Materials for Remediation of Trichloroethylene Contamination in Groundwater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7045. [PMID: 37959642 PMCID: PMC10650286 DOI: 10.3390/ma16217045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Groundwater contamination by trichloroethylene (TCE) presents a pressing environmental challenge with far-reaching consequences. Traditional remediation methods have shown limitations in effectively addressing TCE contamination. This study reviews the limitations of conventional remediation techniques and investigates the application of oxidant-based controlled-release materials, including encapsulated, loaded, and gel-based potassium permanganate since the year 2000. Additionally, it examines reductant controlled-release materials and electron donor-release materials such as tetrabutyl orthosilicate (TBOS) and polyhydroxybutyrate (PHB). The findings suggest that controlled-release materials offer a promising avenue for enhancing TCE degradation and promoting groundwater restoration. This study concludes by highlighting the future research directions and the potential of controlled-release materials in addressing TCE contamination challenges.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Wenjin Zhu
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Stealey ST, Gaharwar AK, Zustiak SP. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals (Basel) 2023; 16:821. [PMID: 37375768 DOI: 10.3390/ph16060821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels are widely used for therapeutic delivery applications due to their biocompatibility, biodegradability, and ability to control release kinetics by tuning swelling and mechanical properties. However, their clinical utility is hampered by unfavorable pharmacokinetic properties, including high initial burst release and difficulty in achieving prolonged release, especially for small molecules (<500 Da). The incorporation of nanomaterials within hydrogels has emerged as viable option as a method to trap therapeutics within the hydrogel and sustain release kinetics. Specifically, two-dimensional nanosilicate particles offer a plethora of beneficial characteristics, including dually charged surfaces, degradability, and enhanced mechanical properties within hydrogels. The nanosilicate-hydrogel composite system offers benefits not obtainable by just one component, highlighting the need for detail characterization of these nanocomposite hydrogels. This review focuses on Laponite, a disc-shaped nanosilicate with diameter of 30 nm and thickness of 1 nm. The benefits of using Laponite within hydrogels are explored, as well as examples of Laponite-hydrogel composites currently being investigated for their ability to prolong the release of small molecules and macromolecules such as proteins. Future work will further characterize the interplay between nanosilicates, hydrogel polymer, and encapsulated therapeutics, and how each of these components affect release kinetics and mechanical properties.
Collapse
Affiliation(s)
- Samuel T Stealey
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77433, USA
| | | |
Collapse
|
4
|
Chen Y, Lee JH, Meng M, Cui N, Dai CY, Jia Q, Lee ES, Jiang HB. An Overview on Thermosensitive Oral Gel Based on Poloxamer 407. MATERIALS 2021; 14:ma14164522. [PMID: 34443046 PMCID: PMC8399853 DOI: 10.3390/ma14164522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
In this review, we describe the application of thermosensitive hydrogels composed of poloxamer in medicine, especially for oral cavities. Thermosensitive hydrogels remain fluid at room temperature; at body temperature, they become more viscous gels. In this manner, the gelling system can remain localized for considerable durations and control and prolong drug release. The chemical structure of the poloxamer triblock copolymer leads to an amphiphilic aqueous solution and an active surface. Moreover, the poloxamer can gel by forming micelles in an aqueous solution, depending on its critical micelle concentration and critical micelle temperature. Owing to its controlled-release effect, a thermosensitive gel based on poloxamer 407 (P407) is used to deliver drugs with different characteristics. As demonstrated in studies on poloxamer formulations, an increase in gelling viscosity decreases the drug release rate and gel dissolution time to the extent that it prolongs the drug’s duration of action in disease treatment. This property is used for drug delivery and different therapeutic applications. Its unique route of administration, for many oral diseases, is advantageous over traditional routes of administration, such as direct application and systemic treatment. In conclusion, thermosensitive gels based on poloxamers are suitable and have great potential for oral disease treatment.
Collapse
Affiliation(s)
- Yabing Chen
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Jeong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
| | - Mingyue Meng
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Naiyu Cui
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Chun-Yu Dai
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Qi Jia
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
- Correspondence: (E.-S.L.); (H.-B.J.)
| | - Heng-Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
- Correspondence: (E.-S.L.); (H.-B.J.)
| |
Collapse
|
5
|
Nunes Nicomedes DN, Mota LM, Vasconcellos R, Medrado NV, de Oliveira M, Costa de Alvarenga É, Juste KRC, Righi A, Manhabosco SM, Brigolini Silva GJ, Araújo FGS, Barros de Oliveira A, Campos Batista RJ, Soares JDS, Manhabosco TM. Comparison between hydroxyapatite/soapstone and hydroxyapatite/reduced graphene oxide composite coatings: Synthesis and property improvement. J Mech Behav Biomed Mater 2021; 121:104618. [PMID: 34116433 DOI: 10.1016/j.jmbbm.2021.104618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Economic viability and eco-friendliness are important characteristics that make implants available to the population in a sustainable way. In this work, we evaluate the performance of a low-cost, widely available, and eco-friendly material (talc from soapstone) relative to reduced graphene oxide as reinforcement to brittle hydroxyapatite coatings. We employ a low-cost and straightforward technique, electrodeposition, to deposit the composite coatings on the titanium substrate. Corrosion, wear, and biocompatibility tests indicate that the reduced graphene oxide can be effectively replaced by talc without reducing the mechanical, anticorrosion, and biocompatible composite coatings properties. Our results indicate that talc from soapstone is a promising material for biomedical applications.
Collapse
Affiliation(s)
- Daniel Nilson Nunes Nicomedes
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Laureana Moreira Mota
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Laboratório de Sinalização Celular e Nanobiotecnologia, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Nathanael Vieira Medrado
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Laboratório de Sinalização Celular e Nanobiotecnologia, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Michelle de Oliveira
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Érika Costa de Alvarenga
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Laboratório de Sinalização Celular e Nanobiotecnologia, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Praça Dom Helvécio 74, 36301-160, São João Del Rei, Minas Gerais, Brazil
| | - Karyne R C Juste
- Instituto SENAI de Inovação Em Engenharia de Superfícies. Rua Sete 2000, Bairro Horto Florestal, 31035-536, Belo Horizonte, Minas Gerais, Brazil
| | - Ariete Righi
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Sara Matte Manhabosco
- Laboratório de Metrologia, Universidade Federal Do Rio Grande, Campus Carreiros, Av. Itália, Km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Guilherme Jorge Brigolini Silva
- Laboratório de Construção Civil, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro Escola de Minas/DECIV, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Fernando Gabriel S Araújo
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Alan Barros de Oliveira
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Ronaldo Junio Campos Batista
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Jaqueline Dos Santos Soares
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Taíse Matte Manhabosco
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Gutiérrez-Climente R, Clavié M, Dumy P, Mehdi A, Subra G. Sol-gel process: the inorganic approach in protein imprinting. J Mater Chem B 2021; 9:2155-2178. [PMID: 33624655 DOI: 10.1039/d0tb02941f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins play a central role in the signal transmission in living systems since they are able to recognize specific biomolecules acting as cellular receptors, antibodies or enzymes, being themselves recognized by other proteins in protein/protein interactions, or displaying epitopes suitable for antibody binding. In this context, the specific recognition of a given protein unlocks a range of interesting applications in diagnosis and in targeted therapies. Obviously, this role is already fulfilled by antibodies with unquestionable success. However, the design of synthetic artificial systems able to endorse this role is still challenging with a special interest to overcome limitations of antibodies, in particular their production and their stability. Molecular Imprinted Polymers (MIPs) are attractive recognition systems which could be an alternative for the specific capture of proteins in complex biological fluids. MIPs can be considered as biomimetic receptors or antibody mimics displaying artificial paratopes. However, MIPs of proteins remains a challenge due to their large size and conformational flexibility, their complex chemical nature with multiple recognition sites and their low solubility in most organic solvents. Classical MIP synthesis conditions result in large polymeric cavities and unspecific binding sites on the surface. In this review, the potential of the sol-gel process as inorganic polymerization strategy to overcome the drawbacks of protein imprinting is highlighted. Thanks to the mild and biocompatible experimental conditions required and the use of water as a solvent, the inorganic polymerization approach better suited to proteins than organic polymerization. Through numerous examples and applications of MIPs, we proposed a critical evaluation of the parameters that must be carefully controlled to achieve sol-gel protein imprinting (SGPI), including the choice of the monomers taking part in the polymerization.
Collapse
Affiliation(s)
| | | | - Pascal Dumy
- IBMM, Univ. Montpellier, CNRS, ENSCM, France.
| | - Ahmad Mehdi
- ICGM, Univ. Montpellier, CNRS, ENSCM, France
| | | |
Collapse
|
7
|
Silva MCC, Santos MSF, Bezerra RDS, Araújo-Júnior EA, Osajima JA, Santos MRMC, Fonseca MG, Silva-Filho EC. Kaolinite/cashew gum bionanocomposite for doxazosin incorporation and its release. Int J Biol Macromol 2020; 161:927-935. [PMID: 32531359 DOI: 10.1016/j.ijbiomac.2020.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
Incorporation of drugs in clay minerals has been widely proposed for the controlled-release or increased solubility of drugs. In this context, a bionanocomposite based on kaolinite and cashew gum (Kln/Gum) was synthesized and characterized by X-ray diffraction (XRD), thermal analysis (TG/DTA), and Fourier transform infrared spectroscopy (FTIR). The bionanocomposite was applied to the incorporation and further release of doxazosin mesylate (DB). The influence of solution pH (1-3), adsorbent dose (20-50 mg), initial drug concentration (20.0-70.0 mg L-1), contact time (15-300 min), and temperature (25, 35, and 45 °C) were systematically evaluated. Equilibrium was reached around 60 min, with a maximum adsorption capacity of 31.5 ± 2.0 mg g-1 at a pH of 3.0 and 25 °C. Hydrogen bonding contributed to DB incorporation on the Kln/Gum. In addition, DB maximum amounts of 16.80 ± 0.58 and 77.00 ± 2.46% were released at pH values of 1.2 and 7.4, respectively. These results indicated that the Kln/Gum bionanocomposite is an effective and promising material for the incorporation/release of drugs with similar structures to DB.
Collapse
Affiliation(s)
- Maura C C Silva
- Caxias Higher Studies Center - CESC, UEMA, Caxias, 65600-000, MA, Brazil
| | | | - Roosevelt D S Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, PI, Brazil
| | - Edgar A Araújo-Júnior
- Interdisciplinary Laboratory for Advanced Materials-LIMAV, UFPI, Teresina, 64049-550, PI, Brazil
| | - Josy A Osajima
- Interdisciplinary Laboratory for Advanced Materials-LIMAV, UFPI, Teresina, 64049-550, PI, Brazil
| | - Maria R M C Santos
- Interdisciplinary Laboratory for Advanced Materials-LIMAV, UFPI, Teresina, 64049-550, PI, Brazil
| | - Maria G Fonseca
- Federal University of Paraiba, Research and Extension Center - Fuel and Materials Laboratory (NPE -LACOM), UFPB, João Pessoa, 58051-085, PB, Brazil
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials-LIMAV, UFPI, Teresina, 64049-550, PI, Brazil.
| |
Collapse
|