1
|
Melnikov AR, Ivanov MY, Samsonenko AA, Getmanov YV, Nikovskiy IA, Matiukhina AK, Zorina-Tikhonova EN, Voronina JK, Goloveshkin AS, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL, Fedin MV, Veber SL. Inductive detection of temperature-induced magnetization dynamics of molecular spin systems. J Chem Phys 2024; 160:224201. [PMID: 38856059 DOI: 10.1063/5.0211936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation. Another possible source of perturbation is a laser pulse that rapidly heats the sample. This approach has proven to be one of the most useful techniques for studying the kinetics and mechanism of chemical and biochemical reactions. Inspired by these works, we propose an inductive detection of temperature-induced magnetization dynamics as applied to the study of molecular spin systems and describe the general design and construction of a particular induction probehead, taking into account the constraints imposed by the cryostat and electromagnet. To evaluate the performance, several coordination compounds of VO2+, Co2+, and Dy3+ were investigated using low-energy pulses of a terahertz free electron laser of the Novosibirsk free electron laser facility as a heat source. All measured magnetization dynamics were qualitatively or quantitatively described using a proposed basic theoretical model and compared with the data obtained by alternating current magnetometry. Based on the results of the research, the possible scope of applications of inductive detection and its advantages and disadvantages in comparison with standard methods are discussed.
Collapse
Affiliation(s)
- Anatoly R Melnikov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Mikhail Yu Ivanov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
| | - Arkady A Samsonenko
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Yaroslav V Getmanov
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Igor A Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russian Federation
| | - Anna K Matiukhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Ekaterina N Zorina-Tikhonova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Julia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Alexander S Goloveshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russian Federation
| | - Konstantin A Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Matvey V Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Sergey L Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| |
Collapse
|
2
|
Khatri G, Fritjofson G, Hanson-Flores J, Kwon J, Del Barco E. A 220 GHz-1.1 THz continuous frequency and polarization tunable quasi-optical electron paramagnetic resonance spectroscopic system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:034714. [PMID: 37012778 DOI: 10.1063/5.0107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Here, we describe a custom-designed quasi-optical system continuously operating in the frequency range 220 GHz to 1.1 THz with a temperature range of 5-300 K and magnetic fields up to 9 T capable of polarization rotation in both transmitter and receiver arms at any given frequency within the range through a unique double Martin-Puplett interferometry approach. The system employs focusing lenses to amplify the microwave power at the sample position and recollimate the beam to the transmission branch. The cryostat and split coil magnets are furnished with five optical access ports from all three major directions to the sample sitting on a two-axes rotatable sample holder capable of performing arbitrary rotations with respect to the field direction, enabling broad accessibility to experimental geometries. Initial results from test measurements on antiferromagnetic MnF2 single crystals are included to verify the operation of the system.
Collapse
Affiliation(s)
- Gyan Khatri
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Gregory Fritjofson
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Jacob Hanson-Flores
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Jaesuk Kwon
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
3
|
Skachkov D, Liu SL, Chen J, Christou G, Hebard AF, Zhang XG, Trickey SB, Cheng HP. Dipole Switching by Intramolecular Electron Transfer in Single-Molecule Magnetic Complex [Mn 12O 12(O 2CR) 16(H 2O) 4]. J Phys Chem A 2022; 126:5265-5272. [PMID: 35939333 DOI: 10.1021/acs.jpca.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study intramolecular electron transfer in the single-molecule magnetic complex [Mn12O12(O2CR)16 (H2O)4] for R = -H, -CH3, -CHCl2, -C6H5, and -C6H4F ligands as a mechanism for switching of the molecular dipole moment. Energetics is obtained using the density functional theory (DFT) with onsite Coulomb energy correction (DFT + U). Lattice distortions are found to be critical for localizing an extra electron on one of the easy sites on the outer ring in which localized states can be stabilized. We find that the lowest-energy path for charge transfer is for the electron to go through the center via superexchange-mediated tunneling. The energy barrier for such a path ranges from 0.4 to 54 meV depending on the ligands and the isomeric form of the complex. The electric field strength needed to move the charge from one end to the other, thus reversing the dipole moment, is 0.01-0.04 V/Å.
Collapse
Affiliation(s)
- Dmitry Skachkov
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Shuang-Long Liu
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Jia Chen
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - George Christou
- The M2QM Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Arthur F Hebard
- The M2QM Center, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Xiao-Guang Zhang
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Samuel B Trickey
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Hai-Ping Cheng
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|