1
|
Shao C, Zhao H, Wang P. Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. NANO CONVERGENCE 2022; 9:11. [PMID: 35235069 PMCID: PMC8891417 DOI: 10.1186/s40580-022-00302-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
New advances in nanotechnology are driving a wave of technology revolution impacting a broad range of areas in agricultural production. The current work reviews nanopesticides, nano-fabricated fertilizers, and nano activity-based growth promoters reported in the last several years, focusing on mechanisms revealed for preparation and functioning. It appears to us that with many fundamental concepts have been demonstrated over last two decades, new advances in this area continue to expand mainly in three directions, i.e., efficiency improvement, material sustainability and environment-specific stimulation functionalities. It is also evident that environmental and health concerns associated with nano agrochemicals are the primary motivation and focus for most recent work. Challenges and perspectives for future development of nano agrochemicals are also discussed.
Collapse
Affiliation(s)
- Chen Shao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Huawei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N, Tavakkoli E, Van Zwieten L, Vinu A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J Control Release 2022; 343:187-206. [DOI: 10.1016/j.jconrel.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
|
3
|
Rao J, Chandrani AN, Powar A, Chandra S. Preparation of microcapsule suspension of herbicide oxyfluorfen polyurea and its effects on phytotoxicity on rice crop. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1951285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jayprakash Rao
- Indofil Industries Limited, Research and Development Lab., Thane, Maharashtra, India
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Amar Nath Chandrani
- Indofil Industries Limited, Research and Development Lab., Thane, Maharashtra, India
| | - Anil Powar
- Indofil Industries Limited, Research and Development Lab., Thane, Maharashtra, India
| | - Sudeshna Chandra
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Liu H, Zhang Z, Li J, Zang W, Yang Q, Yang J. Fabrication of gelatin microspheres containing ammonium hydrogen carbonate for the tunable release of herbicide. Biotechnol Lett 2021; 43:1747-1755. [PMID: 34275026 DOI: 10.1007/s10529-021-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
The major challenge in utilizing pesticides lies in identifying the precise application that would improve the efficiency of these pesticides and decline their environmental and health hazards at the same time. Such application requires the development of specific formulations that enable controlled, stimuli-responsive release of the pesticides. Gelatin is a relatively cheap material characterized by temperature-sensitivity and abundant amino acid groups, which makes it suitable for the storage and controlled release of pesticides. In this study, gelatin microspheres were prepared by emulsion and cross-linking, then they were loaded with 2,4-dichlorophenoxyacetic acid sodium (2,4-D Na) as a model herbicide. To achieve temperature-tunable release of 2,4-D Na from the microspheres, NH4HCO3 was added to the formulations at different concentrations. The prepared formulations were characterized by SEM, FTIR, and size distribution analyzes, and their drug loading capacities were determined. Based on bioassay experiments, the 2,4-D Na-NH4HCO3-loaded gelatin microspheres can effectively control the spread of dicotyledonous weeds. Therefore, the strategy proposed herein can be used to develop novel, effective herbicide formulations.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wanyu Zang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Zhang B, Ni Y, Liu J, Yan T, Zhu X, Li QX, Hua R, Pan D, Wu X. Bead-immobilized Pseudomonas stutzeri Y2 prolongs functions to degrade s-triazine herbicides in industrial wastewater and maize fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139183. [PMID: 32388161 DOI: 10.1016/j.scitotenv.2020.139183] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Functional durability of bio-augmented microbes in contaminated fields remains a major challenge in bioremediation. In the present study, various immobilization materials and compositional combinations were designed and compared to enhance the functional durability of Pseudomonas stutzeri sp. Y2 for degradation of simazine, one of the most used herbicides, in industrial wastewater and maize fields. Among four combinations of materials tested, the optimal combination obtained from the orthogonal array trials was 14% polyvinyl alcohol (PVA), 1-3% sodium alginate (SA), 2% activated carbon (AC), and 1-2% Y2 cells (PSC-Y2), which yielded 1.7 fold faster degradation of simazine at 50 mg L-1 than that by free Y2 cells in the industrial wastewater. The degradation half-lives (DT50) of simazine (10 mg L-1) by free Y2 cells and PSC-Y2 was 1.1 d and 5.3 d in laboratory soil, respectively. The DT50 of simazine by PSC-Y2 at the recommended and double dosages of simazine (0.45 and 0.9 g ai·m-2) was 17.2 d and 12.4 d in the maize fields, respectively, in comparison with 23 d and 17.4 d by free Y2 cells. In addition, the PSC-Y2 degraded 100% of atrazine and terbuthylazine, and 96% of propazine at an initial concentration of 50 mg L-1 each in 4 days. This study provides an immobilization strategy to stabilize bacteria and prolong bacterial functions to treat s-triazine herbicides contaminated water and soil.
Collapse
Affiliation(s)
- Baoyu Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Yaxin Ni
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Junwei Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China; Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiaomin Zhu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
6
|
Pradhan D, Biswasroy P, Kumar Naik P, Ghosh G, Rath G. A Review of Current Interventions for COVID-19 Prevention. Arch Med Res 2020; 51:363-374. [PMID: 32409144 PMCID: PMC7190516 DOI: 10.1016/j.arcmed.2020.04.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of CoVID-19 is declared as a global public health emergency of international concern by the World Health Organization (WHO). A fresh figure of 2268011 positive cases and 155185 death records (till April 18th 2020) across the worldwide signify the severity of this viral infection. CoVID-19 infection is a pandemic, surface to surface communicable disease with a case fatality rate of 3.4% as estimated by WHO up to March 3rd 2020. Unfortunately, the current unavailability of an effective antiviral drug and approved vaccine, worsen the situation more critical. Implementation of an effective preventive measure is the only option left to counteract CoVID-19. Further, a retrospective analysis provides evidence that contemplates the decisive role of preventive measures in controlling severe acute respiratory syndrome (SARS) outbreak in 2003. A statistical surveillance report of WHO reflects, maintaining a coherent infection, prevention and control guideline resulted in a 30% reduction in healthcare-associated infections. The effectiveness of preventive measures completely relies on the strength of surface disinfectants, the composition of hand sanitizer, appropriate material for the manufacture of personal protective equipment (PPE). This review enlightens the various preventive measures such as a suitable selection of surface disinfectants, appropriate hand sanitization, and empowering the PPE that could be a potential intervention to fight against CoVID-19.
Collapse
Affiliation(s)
- Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | - Prativa Biswasroy
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|