1
|
Kandaswamy K, Panda SP, Shaik MR, Hussain SA, Deepak P, Thiyagarajulu N, Jain D, Antonyraj APM, Subramanian R, Guru A, Arockiaraj J. Formulation of Asiatic acid-loaded polymeric chitosan-based hydrogel for effective MRSA infection control and enhanced wound healing in zebrafish models. Int J Biol Macromol 2025; 293:137425. [PMID: 39542332 DOI: 10.1016/j.ijbiomac.2024.137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Wound healing relies on a controlled inflammatory process vital for tissue regeneration. Chronic wounds, characterized by persistent inflammation and high infection risk, pose significant challenges in healthcare. Hydrogel dressings offer promise in wound care; however, the understanding of their role in managing inflammation and infection remains unclear. This study aimed to elucidate these processes and assess the efficacy of Asiatic acid (AA)-infused hydrogels in reducing inflammation and preventing infection. The unique properties of AA suggest its potential to modulate inflammation, promote tissue regeneration, and inhibit microbial colonization, thereby paving the way for specialized dressings that optimize healing outcomes. METHODS The investigation encompassed the antibacterial, anti-biofilm, antioxidant activity, and biocompatibility of AA using a fibroblast cell line. A hydrogel incorporating AA was developed and characterized through scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle analysis, tensile testing, swelling capacity, and thermal stability assessments. Biodegradability was evaluated via enzymatic degradation, alongside controlled drug release and antibacterial efficacy against MRSA. In vivo studies using a zebrafish model examined wound healing and immune response. RESULTS Results confirmed AA's potent antibacterial activity against MRSA and its effectiveness in disrupting mature biofilms. Additionally, AA exhibited strong antioxidant activity and biocompatibility. Morphological analysis revealed a pore structure conducive to wound healing, and the hydrogel demonstrated enhanced tensile strength, swelling properties, and thermal stability. In vivo, the AA-infused hydrogel accelerated wound closure, re-epithelialization, and immune response, supporting its potential for advanced wound care applications. In conclusion, the AA-infused chitosan hydrogel emerges as a promising candidate for advanced wound care therapies.
Collapse
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Paramasivam Deepak
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Kothanur (PO), Bengaluru 560077, India
| | - Nathiya Thiyagarajulu
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Kothanur (PO), Bengaluru 560077, India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee, Chennai 600 077, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Cancer and Stem Cell Research Lab, Department of pharmacology, Saveetha Dental College and Hospitals, Chennai 600 077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Codreanu (Manea) AMN, Stefan DS, Kim L, Stefan M. Depollution of Polymeric Leather Waste by Applying the Most Current Methods of Chromium Extraction. Polymers (Basel) 2024; 16:1546. [PMID: 38891494 PMCID: PMC11175144 DOI: 10.3390/polym16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The leather industry is one of the most polluting industries in the world due to the large amounts of waste following raw hide processing but also due to the high content of chemical substances present in leather waste. The main problem with chromium-tanned leather solid waste is related to the storage, due to the ability of chromium to leach into soil or water, and also owing to the high ability of trivalent chromium to oxidize to its toxic form, hexavalent chromium. The purpose of this article is to present the most current methods of chromium extraction from solid tanned leather waste in order to obtain non-polluting leather, which can constitute secondary raw material in new industrial processes. The extraction methods identified in the present study are based on acid/basic/enzymatic hydrolysis and substitution with the help of organic chelators (organic acids and organic acid salts). In addition, this study includes a comparative analysis of the advantages and disadvantages of each identified extraction method. At the same time, this study also presents alternative chromium extraction methods based on the combination of conventional extraction methods and ultrasound-assisted extraction.
Collapse
Affiliation(s)
- Ana-Maria Nicoleta Codreanu (Manea)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Polizu Street, No 1-7, 011061 Bucharest, Romania;
- Department for Evaluation, Monitoring Environmental Pollution, National Research and Development Institute for Industrial Ecology, Drumul Podu Dambovitei Street, No 57-73, 060652 Bucharest, Romania;
| | - Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Polizu Street, No 1-7, 011061 Bucharest, Romania;
| | - Lidia Kim
- Department for Evaluation, Monitoring Environmental Pollution, National Research and Development Institute for Industrial Ecology, Drumul Podu Dambovitei Street, No 57-73, 060652 Bucharest, Romania;
| | - Mircea Stefan
- Pharmacy Faculty, “Titu Maiorescu” University, 22 Dâmbovnicului Street, 040441 Bucharest, Romania
| |
Collapse
|
3
|
Constantin C, Stefan DS, Manea-Saghin AM, Meghea I. Innovative Collagen Based Biopolymers Tested as Fertilizers for Poor Soils Amendment. Polymers (Basel) 2023; 15:polym15092085. [PMID: 37177228 PMCID: PMC10181486 DOI: 10.3390/polym15092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Improving soil quality is of growing interest and, among optimal solutions, the reuse and recycling of biopolymers of pelt waste from the tannery industry have been proposed, one of them being for collagen hydrolysate with micronutrients and polymers incorporated, to be used as fertilizers for poor soils rehabilitation. As functionalization agents, polyacrylamide, starch and dolomite were included into biopolymer matrixes in order to enhance their specific efficiency. These fertilizers were adequately characterized for their physical-chemical properties, including nutrient content, and tested on three poor soils, while a fourth sample of normal soil was chosen for comparative purposes. These soils were also characterized for their texture and physical-chemical properties in order to establish the fertility state of the soils as a function of nutrient content. In this respect, a series of agrochemical tests were developed at laboratory scale, simulating real agriculture environments in a vegetation room, where a significant plant growth in height was observed for all the agro-hydrogels with nutrients encapsulated, and multiplication of the nodosities number was observed in the case of the soybean culture. The most significant effect was obtained in the case of the fertilizer functionalized with starch. Finally, the application dose of the organic fertilizers for specific culture plants was estimated, such as field cultures (cereals, corn), field vegetables, vineyards or fruit-growing plantations. These agro-collagen fertilizers are particularly recommended for amendment of field cereals and vegetables. The novelty of this study mainly consists of the recovery and recycling of the pelt waste as efficient fertilizers after their adequate functionalization with synthetic or natural biopolymers.
Collapse
Affiliation(s)
- Carolina Constantin
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Ana-Maria Manea-Saghin
- Research Center for Environmental Protection and Eco-Friendly Technologies, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Irina Meghea
- Department of Mathematical Methods and Models, Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independentei Str., 060042 Bucharest, Romania
| |
Collapse
|
4
|
Environmentally Friendly Hybrid Organic-Inorganic Halogen-Free Coatings for Wood Fire-Retardant Applications. Polymers (Basel) 2022; 14:polym14224959. [PMID: 36433089 PMCID: PMC9693554 DOI: 10.3390/polym14224959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Wood and wood-based products are extensively used in the building sector due to their interesting combination of properties. Fire safety and fire spread, however, are of utmost concern for the protection of buildings. Therefore, in timber structures, wood must be treated with fire-retardant materials in order to improve its reaction to fire. This article highlights the flame retardancy of novel hybrid organic-inorganic halogen-free coatings applied on plywood substrates. For this purpose, either a huntite-rich mineral (H5) or its modified nano-Mg (OH)2 type form (H5-m), acting as an inorganic (nano) filler, was functionalized with reactive oligomers (ROs) and incorporated into a waterborne polymeric matrix. A water-soluble polymer (P (SSNa-co-GMAx)), combining its hydrophilic nature with functional epoxide groups, was used as the reactive oligomer in order to enhance the compatibility between the filler and the matrix. Among various coating compositions, the system composed of 13% polymeric matrix, 73% H5 and 14% ROs, which provided the best coating quality and flame retardancy, was selected for the coating of plywood on a larger scale in one or two layers. The results indicated that the novel plywood coating systems with the addition of ecological coating formulations (WF-13, WF-14 and WF-15), prepared at two layers, reached Euroclass B according to EN13501-1, which is the best possible for fire systems applied to wood.
Collapse
|
5
|
Druvari D, Tzoumani I, Piperigkou Z, Tzaferi K, Tselentis D, Vlamis-Gardikas A, Karamanos NK, Bokias G, Kallitsis JK. Development of Environmentally Friendly Biocidal Coatings Based on Water-soluble Copolymers for Air-cleaning Filters. ACS OMEGA 2022; 7:35204-35216. [PMID: 36211061 PMCID: PMC9535736 DOI: 10.1021/acsomega.2c04427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Air pollution by pathogens has posed serious concern on global health during the last decades, especially since the breakout of the last pandemic. Therefore, advanced high-efficiency techniques for air purification are highly on demand. However, in air-filtering devices, the prevention of secondary pollution that may occur on the filters remains a challenge. Toward this goal, in the present work, we demonstrate a facile and eco-friendly process for the biocidal treatment of commercial high-efficiency particulate air filters. The antibacterial filters were successfully prepared through spray coating of aqueous solutions based on biocidal water-soluble polymers, poly(sodium 4-styrene sulfonate-co-cetyl trimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate) [P(SSNa24-co-SSAmC1656-co-GMA20)] and poly(2-dimethylaminoethyl)methacrylate. Significantly, an optimized green route was developed for the synthesis of the used polymers in aqueous conditions and their stabilization through cross-linking reaction, leading to biocidal air filters with long-lasting activity. The developed coatings presented strong and rapid antibacterial activity against Staphylococcus aureus (in 5 min) and Escherichia coli (in 15 min). Moreover, the cytotoxicity test of the polymeric materials toward Α549 lung adenocarcinoma cells indicated very low toxicity as they did not affect either the cell growth or cell morphology. The above-mentioned results together with the scalable and easy-to-produce green methodology suggest that these materials can be promising candidates as filter coatings for use on air-purification devices.
Collapse
Affiliation(s)
- Denisa Druvari
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- Metricon
S.A., Athinon 65, Ag.
Georgios, GR-26504 Rio-Patras, Greece
| | - Ioanna Tzoumani
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Zoi Piperigkou
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | | | - Nikos K. Karamanos
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgios Bokias
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
| | - Joannis K. Kallitsis
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
| |
Collapse
|
6
|
Advanced Collagen-Based Composites as Fertilizers Obtained by Recycling Lime Pelts Waste Resulted during Leather Manufacture. Polymers (Basel) 2022; 14:polym14153169. [PMID: 35956683 PMCID: PMC9370987 DOI: 10.3390/polym14153169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Recent trends in ecological agriculture practices are focused on finding optimal solutions for reuse and recycling of pelt waste from tannery industry. In this context, new collagen-based hydrogels with NPK nutrients encapsulated have been functionalized with synthetic and natural additives, including starch and dolomite, to be used as composite fertilizers. Possible interaction mechanisms are presented in case of each synthetic or natural additive, ranging from strong linkages as a result of esterification reactions until hydrogen bonds and ionic valences. Such interactions are responsible for nutrient release towards soil and plants. These fertilizers have been adequately characterized for their physical chemical and biochemical properties, including nutrient content, and tested on three Greek poor soils and one Romanian normal soil samples. A series of agrochemical tests have been developed by evaluation of uptake and leaching of nutrients on mixtures of sand and soils. It was observed that the clay soil exhibits a higher adsorption capacity than the loam soil for most of nutrients leached from the composite fertilizers tested, with this being correlated with a slower control release towards cultivated plants, thus assuring efficiency of these collagen-based composite fertilizers. The most significant effect was obtained in the case of collagen-based fertilizer functionalized with starch.
Collapse
|
7
|
Tzoumani I, Soto Beobide A, Iatridi Z, Voyiatzis GA, Bokias G, Kallitsis JK. Glycidyl Methacrylate-Based Copolymers as Healing Agents of Waterborne Polyurethanes. Int J Mol Sci 2022; 23:ijms23158118. [PMID: 35897694 PMCID: PMC9332020 DOI: 10.3390/ijms23158118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Amaia Soto Beobide
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR-26504 Patras, Greece;
| | - Zacharoula Iatridi
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- Correspondence:
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| |
Collapse
|
8
|
Stefan DS, Bosomoiu M, Dancila AM, Stefan M. Review of Soil Quality Improvement Using Biopolymers from Leather Waste. Polymers (Basel) 2022; 14:polym14091928. [PMID: 35567096 PMCID: PMC9101923 DOI: 10.3390/polym14091928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
This paper reviews the advantages and disadvantages of the use of fertilizers obtained from leather waste, to ameliorate the agricultural soil quality. The use of leather waste (hides and skins) as raw materials to obtain biopolymer-based fertilizers is an excellent example of a circular economy. This allows the recovery of a large quantity of the tanning agent in the case of tanned wastes, as well as the valorization of significant quantities of waste that would be otherwise disposed of by landfilling. The composition of organic biopolymers obtained from leather waste is a rich source of macronutrients (nitrogen, calcium, magnesium, sodium, potassium), and micronutrients (boron, chloride, copper, iron, manganese, molybdenum, nickel and zinc), necessary to improve the composition of agricultural soils, and to remediate the degraded soils. This enhances plant growth ensuring better crops. The nutrient release tests have demonstrated that, by using the biofertilizers with collagen or with collagen cross-linked with synthetic polymers, the nutrient release can be controlled and slowed. In this case, the loss of nutrients by leaching into the inferior layers of the soil and ground water is minimized, avoiding groundwater contamination, especially with nitrate.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (A.M.D.)
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (A.M.D.)
- Correspondence:
| | - Annette Madelene Dancila
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (A.M.D.)
| | - Mircea Stefan
- Pharmacy Faculty, University Titu Maiorescu, 22 Dâmbovnicului Street, 040441 Bucharest, Romania;
| |
Collapse
|
9
|
Stefan DS, Bosomoiu M, Constantinescu RR, Ignat M. Composite Polymers from Leather Waste to Produce Smart Fertilizers. Polymers (Basel) 2021; 13:4351. [PMID: 34960902 PMCID: PMC8704668 DOI: 10.3390/polym13244351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
The leather industry is facing important environmental issues related to waste disposal. The waste generated during the tanning process is an important resource of protein (mainly collagen) which can be extracted and reused in different applications (e.g., medical, agricultural, leather industry). On the other side, the utilization of chemical fertilizers must be decreased because of the negative effects associated to an extensive use of conventional chemical fertilizers. This review presents current research trends, challenges and future perspectives with respect to the use of hide waste to produce composite polymers that are further transformed in smart fertilizers. Hide waste contains mostly protein (collagen that is a natural polymer), that is extracted to be used in the cross-linking with water soluble copolymers to obtain the hydrogels which are further valorised as smart fertilizers. Smart fertilizers are a new class of fertilizers which allow the controlled release of the nutrients in synchronization with the plant's demands. Characteristics of hide and leather wastes are pointed out. The fabrication methods of smart fertilizers and the mechanisms for the nutrients release are extensively discussed. This novel method is in agreement with the circular economy concepts and solves, on one side, the problem of hide waste disposal, and on the other side produces smart fertilizers that can successfully replace conventional chemical fertilizers.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Rodica Roxana Constantinescu
- Leather and Footwear Research Institute (ICPI) Division, National Research & Development Institute for Textiles and Leather, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (R.R.C.); (M.I.)
| | - Madalina Ignat
- Leather and Footwear Research Institute (ICPI) Division, National Research & Development Institute for Textiles and Leather, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (R.R.C.); (M.I.)
| |
Collapse
|
10
|
Preparation of Antimicrobial Coatings from Cross-Linked Copolymers Containing Quaternary Dodecyl-Ammonium Compounds. Int J Mol Sci 2021; 22:ijms222413236. [PMID: 34948032 PMCID: PMC8707885 DOI: 10.3390/ijms222413236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
One of the concerns today’s societies face is the development of resistant pathogenic microorganisms. The need to tackle this problem has driven the development of innovative antimicrobial materials capable of killing or inhibiting the growth of microorganisms. The present study investigates the dependence of the antimicrobial activity and solubility properties on the hydrophilicity/hydrophobicity ratio of antimicrobial coatings based on quaternary ammonium compounds. In this line, suitable hydrophilic and hydrophobic structural units were selected for synthesizing the antimicrobial copolymers poly(4-vinylbenzyl dimethyldodecylammonium chloride-co-acrylic acid), P(VBCDDA-co-AA20) and poly(dodecyltrimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate), P(SSAmC12-co-GMA20), bearing an alkyl chain of 12 carbons either through covalent bonding or through electrostatic interaction. The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends, obtained through solution casting after curing at various temperatures. The release of the final products in pure water and NaCl 1 M solutions (as analyzed by gravimetry and total organic carbon, TOC/total nitrogen, TN analyses), could be controlled by the coating composition. The cross-linked polymeric membranes of composition 60/40 w/w % ratios led to 97.8 and 99.7% mortality for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, whereas the coating 20/80 w/w % resulted in 96.6 and 99.8% cell reduction. Despite the decrease in hydrophobicity (from a 16- to a 12-carbon alkyl chain), the new materials maintained the killing efficacy, while at the same time resulting in increased release to the aqueous solution.
Collapse
|
11
|
Stefan DS, Zainescu G, Manea-Saghin AM, Triantaphyllidou IE, Tzoumani I, Tatoulis TI, Syriopoulos GT, Meghea A. Collagen-Based Hydrogels Composites from Hide Waste to Produce Smart Fertilizers. MATERIALS 2020; 13:ma13194396. [PMID: 33019785 PMCID: PMC7579580 DOI: 10.3390/ma13194396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
The study aims at reusing and recycling the protein hide waste from the leather industry in ecological conditions by elaborating an innovative procedure in order to obtain a collagen matrix functionalized with nitrogen, phosphorus, and potassium (NPK) nutrients to be used for preparing smart fertilizers. This is an interdisciplinary approach, as it starts from hide waste raw material as a critical industrial waste, which is then subjected to several technological steps by selection of optimal processing parameters, followed by product fabrication at the laboratory, and next scales to the industrial pilot plant to obtain novel agro-hydrogels. In this context, the technology scheme for collagen hydrolysate with encapsulated nutrients was proposed and the process parameters were optimized by functionalization of agro-hydrogels with various natural and synthetic polymers, such as polyacrylamide, poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate) copolymer, starch or dolomite. Based on the laboratory experiments, a pilot plant was constructed and tested. Taking as reference the collagen hydrolysate with encapsulated nutrients, the new fertilizers were adequately characterized by chemical analysis, determination of biodegradability and the degree of release of oxidable compounds in water. Based on the biodegradation mechanism and kinetic analysis of oxidable compounds release, adequate arguments are evidenced to demonstrate that these fertilizers can be applied for amendment of poor agricultural soils.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu str., RO-011061 Bucharest, Romania;
| | - Gabriel Zainescu
- National R&D Research Institute for Textile and Leather Division: Leather and Footwear Research Institute, 93 Ion Minulescu str., RO-031215 Bucharest, Romania;
| | - Ana-Maria Manea-Saghin
- Research Center for Environmental Protection and Eco-Friendly Technologies, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu str., RO-011061 Bucharest, Romania;
| | - Irene-Eva Triantaphyllidou
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece;
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece;
| | - Ioanna Tzoumani
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece;
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Triantafyllos I. Tatoulis
- Sirmet SA, Engineering and Management, 4-6 Filopoimenos str., 26221 Patras, Greece; (T.I.T.); (G.T.S.)
| | - George T. Syriopoulos
- Sirmet SA, Engineering and Management, 4-6 Filopoimenos str., 26221 Patras, Greece; (T.I.T.); (G.T.S.)
| | - Aurelia Meghea
- Research Center for Environmental Protection and Eco-Friendly Technologies, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu str., RO-011061 Bucharest, Romania;
- Correspondence:
| |
Collapse
|