1
|
Zheng Y, Xiao Z, Lin Y, Fang Z, Liu D, Lin Z, Zhang Q, Chen P, Zhang Z, Xv L, Lv W, Liu G. Degradation of sulfonamide antibiotic via UV/MgO 2 system: kinetic, application, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14239-14253. [PMID: 38273083 DOI: 10.1007/s11356-024-32079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
In response to antibiotic residues in the water, a novel advanced oxidation technology based on MgO2 was used to remediate sulfamethazine (SMTZ) pollution in aquatic environments. Upon appropriate regulation, the remarkable removal efficiency of SMTZ was observed in a UV/MgO2 system, and the pseudo-first-order reaction constant reached 0.4074 min-1. In addition, the better performance of the UV/MgO2 system in a weak acid environment was discovered. During the removal of SMTZ, the pathways of SMTZ degradation were deduced, including nitration, ring opening, and group loss. In the mineralization exploration, the further removal of residual products of SMTZ by the UV/MgO2 system was visually demonstrated. The qualitative and quantitative researches as well as the roles of reactive species were valuated, which revealed the important role of ·O2-. Common co-existing substances in actual wastewater such as NO3- HA, Cl-, Fe2+, Co2+, and Mn2+ can slightly inhibit the degradation of SMTZ in the UV/MgO2 system. Finally, the capacity of efficient degradation of SMTZ in actual wastewater by the UV/MgO2 system was proved. The results indicated that the innovative UV/MgO2 system was of great practical application prospect in antibiotic residue wastewater remediation.
Collapse
Affiliation(s)
- Yixun Zheng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yijie Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zheng Fang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Deyang Liu
- School of Foreign Languages, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zifeng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qianxin Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhenheng Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lu Xv
- School of Art & Design, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Fradkin O, Mamane H, Kaplan A, Menashe O, Kurzbaum E, Betzalel Y, Avisar D. UV-LED Combined with Small Bioreactor Platform (SBP) for Degradation of 17α-Ethynylestradiol (EE2) at Very Short Hydraulic Retention Time. MATERIALS 2021; 14:ma14205960. [PMID: 34683555 PMCID: PMC8538786 DOI: 10.3390/ma14205960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Degradation of 17α-ethynylestradiol (EE2) and estrogenicity were examined in a novel oxidative bioreactor (OBR) that combines small bioreactor platform (SBP) capsules and UV-LED (ultraviolet light emission diode) simultaneously, using enriched water and secondary effluent. Preliminary experiments examined three UV-LED wavelengths-267, 279, and 286 nm, with (indirect photolysis) and without (direct photolysis) H2O2. The major degradation wavelength for both direct and indirect photolysis was 279 nm, while the major removal gap for direct vs. indirect degradation was at 267 nm. Reduction of EE2 was observed together with reduction of estrogenicity and mineralization, indicating that the EE2 degradation products are not estrogens. Furthermore, slight mineralization occurred with direct photolysis and more significant mineralization with the indirect process. The physical-biological OBR process showed major improvement over other processes studied here, at a very short hydraulic retention time. The OBR can feasibly replace the advanced oxidation process of UV-LED radiation with catalyst in secondary sedimentation tanks with respect to reduction ratio, and with no residual H2O2. Further research into this OBR system is warranted, not only for EE2 degradation, but also to determine its capabilities for degrading mixtures of pharmaceuticals and pesticides, both of which have a significant impact on the environment and public health.
Collapse
Affiliation(s)
- Oran Fradkin
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; (O.F.); (H.M.); (Y.B.)
- The Hydrochemistry Laboratory, The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; (O.F.); (H.M.); (Y.B.)
| | - Aviv Kaplan
- The Hydrochemistry Laboratory, The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Ofir Menashe
- Water Industry Engineering Department, Achi Racov Engineering School, Kinneret College on the Sea of Galilee, M.P. Emek Ha’Yarden 15132, Israel;
- BioCastle Water Technologies Ltd., Tzemach Industries Central Area, Jordan Valley 15105, Israel
| | - Eyal Kurzbaum
- Shamir Research Institute, University of Haifa, Qatzrin 12900, Israel;
| | - Yifaat Betzalel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; (O.F.); (H.M.); (Y.B.)
| | - Dror Avisar
- The Hydrochemistry Laboratory, The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
- Correspondence:
| |
Collapse
|
4
|
Liu J, Yue Y, Ge L, Chen P, Tan F, Wang W, Wang X, Qiao X. Facile fabrication of magnesium peroxide with different morphologies via the isomorphic transformation of magnesium oxide for Fenton-like degradation of methylene blue. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|