1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Lei J, Wang L, Yang C, Li D, Zhang J, Ma J, Zhang P, Li Q, Zhang J. Dasatinib and erianin co-loaded ion-responsive in-situ hydrogel for effective treatment of corneal neovascularization. J Control Release 2024; 376:94-107. [PMID: 39368709 DOI: 10.1016/j.jconrel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Corneal neovasularization (CNV) is one of the leading causes for visual impairment. Dasatinib is a multi-target tyrosine kinase inhibitor, which can inhibit both platelet derived growth factor receptor and Src family kinases. Erianin exhibits excellent anti-inflammatory and anti-angiogenic effects. In this study, dasatinib and erianin were found to synergically inhibit the proliferation, migration and tube formation of Ea.hy926 cells, the three most important cellular processes of CNV. Next, dasatinib and erianin were co-encapsulated in nanostructured lipid carriers (dasa-eri-NLC), which increased the solubility of dasatinib by about 1790 times, increased the solubility of erianin by about 3 times. To improve its retention time on the ocular surface, dasa-eri-NLC was mixed with gellan gum (dasa-eri-NLC-gel), which achieved a sol-gel transformation when got in contact with tears. The dasa-eri-NLC-gel exhibited good rheological properties with shear thinning properties, extended the ocular residence time by more than 6 times, sustained the drug release, improved the corneal permeability of drug and exhibited good biocompatibility. Finally, the in vivo anti-CNV effect was evaluated in an alkaline burned mouse model of CNV, in which, the dasa-eri-NLC-gel significantly impeded the development and pathological changes of CNV, inhibited the expression of TNF-α, VEGF-A, HIF-1α, Src, pSrc in the cornea. In summary, dasa-eri-NLC-gel safely and efficiently delivered dasatinib and erianin to the cornea and exhibited significantly anti-CNV effect via inhibiting various angiogenesis related cytokines or factors. Dasa-eri-NLC-gel showed a great promise for the treatment of CNV and our study laid a solid foundation for future clinical transformation.
Collapse
Affiliation(s)
- Jiaxing Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Torchio A, Boffito M, Laurano R, Cassino C, Lavella M, Ciardelli G. Double-crosslinkable poly(urethane)-based hydrogels relying on supramolecular interactions and light-initiated polymerization: promising tools for advanced applications in drug delivery. J Mater Chem B 2024; 12:8389-8407. [PMID: 39083365 DOI: 10.1039/d4tb00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Physical and chemical hydrogels are promising platforms for tissue engineering/regenerative medicine (TERM). In particular, physical hydrogels are suitable for use in the design of drug delivery systems owing to their reversibility and responsiveness to applied stimuli and external environment. Alternatively, the use of chemical hydrogels represents a better strategy to produce stable 3D constructs in the TERM field. In this work, these two strategies were combined to develop multi-functional formulations integrating both drug delivery potential and TERM approaches in a single device. Specifically, a novel photo-sensitive poly(ether urethane) (PEU) was developed to form supramolecular networks with α-cyclodextrins (α-CDs). The PEU was successfully synthesized using Poloxamer® 407, 1,6-diisocyanatohexane and 2-hydroxyethyl methacrylate, as assessed by infrared spectroscopy, size exclusion chromatography and proton nuclear magnetic resonance (1H NMR) spectroscopy. Subsequently, PEU thermo-responsiveness was characterized through critical micelle temperature evaluation and dynamic light scattering analyses, which suggested the achievement of a good balance between molecular mass and overall hydrophobicity. Consequently, the formation of supramolecular domains with α-CDs was demonstrated through X-ray diffraction and 1H NMR spectroscopy. Supramolecular hydrogels with remarkably fast gelation kinetics (i.e., few minutes) were designed using a low PEU concentration (≤5% w/v). All formulations were found to be cytocompatible according to the ISO 10993-5 regulation. Notably, the hydrogels were observed to possess mechanical properties and self-healing ability, according to rheological tests, and their fast photo-crosslinking was evidenced (<60 s) by photo-rheology. A high curcumin payload (570 μg mL-1) was encapsulated in the hydrogels, which was released with highly tunable and progressive kinetics in a physiological-simulated environment for up to 5 weeks. Finally, a preliminary evaluation of hydrogel extrudability was performed using an extrusion-based bioprinter, obtaining 3D-printed structures showing good morphological fidelity to the original design. Overall, the developed hydrogel platform showed promising properties for application in the emerging field of regenerative pharmacology as (i) easily injectable drug-loaded formulations suitable for post-application stabilization through light irradiation, and (ii) biomaterial inks for the fabrication of patient-specific drug-loaded patches.
Collapse
Affiliation(s)
- Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mario Lavella
- Department of Management, Information and Production Engineering, Università degli Studi di Bergamo, Viale G. Marconi, 5, 24044 Dalmine, BG, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
4
|
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupický D. Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404608. [PMID: 38842816 PMCID: PMC11384239 DOI: 10.1002/adma.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ashish Das
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
5
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Chung J, Zhang J, Saimon AI, Liu Y, Johnson BN, Kong Z. Imbalanced spectral data analysis using data augmentation based on the generative adversarial network. Sci Rep 2024; 14:13230. [PMID: 38853181 PMCID: PMC11163007 DOI: 10.1038/s41598-024-63285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Spectroscopic techniques generate one-dimensional spectra with distinct peaks and specific widths in the frequency domain. These features act as unique identities for material characteristics. Deep neural networks (DNNs) has recently been considered a powerful tool for automatically categorizing experimental spectra data by supervised classification to evaluate material characteristics. However, most existing work assumes balanced spectral data among various classes in the training data, contrary to actual experiments, where the spectral data is usually imbalanced. The imbalanced training data deteriorates the supervised classification performance, hindering understanding of the phase behavior, specifically, sol-gel transition (gelation) of soft materials and glycomaterials. To address this issue, this paper applies a novel data augmentation method based on a generative adversarial network (GAN) proposed by the authors in their prior work. To demonstrate the effectiveness of the proposed method, the actual imbalanced spectral data from Pluronic F-127 hydrogel and Alpha-Cyclodextrin hydrogel are used to classify the phases of data. Specifically, our approach improves 8.8%, 6.4%, and 6.2% of the performance of the existing data augmentation methods regarding the classifier's F-score, Precision, and Recall on average, respectively. Specifically, our method consists of three DNNs: the generator, discriminator, and classifier. The method generates samples that are not only authentic but emphasize the differentiation between material characteristics to provide balanced training data, improving the classification results. Based on these validated results, we expect the method's broader applications in addressing imbalanced measurement data across diverse domains in materials science and chemical engineering.
Collapse
Affiliation(s)
- Jihoon Chung
- Department of Industrial Engineering, Pusan National University, Busan, South Korea
| | - Junru Zhang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amirul Islam Saimon
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Yang Liu
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Blake N Johnson
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Zhenyu Kong
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
8
|
Gu T, Huang J, Yan Y. New opportunities for cyclodextrins in supramolecular assembly: metal organic frameworks, crystalline self-assembly, and catalyzed assembly. Chem Commun (Camb) 2023. [PMID: 37997750 DOI: 10.1039/d3cc04048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cyclodextrins (CDs) are widely used macrocycles in supramolecular assembly due to their easy availability, versatile functionality and excellent biocompatibility. Although they are well-known for forming host-guest complexes with a wide range of guests and this host-guest chemistry has long been utilized in industry and academia, new opportunities have arisen in recent years, particularly in supramolecular assembly. In the present review, we will first provide a basic introduction to CDs and then summarize their emerging roles in the fields of supramolecular chemistry and materials. This includes their involvement in hybrid frameworks with inorganic components such as metal ions and polyoxometalates, crystalline self-assembly with amphiphilic molecules, and their new possibility of "catassembly" and induced chiral supramolecular structures that have previously been overlooked. Finally, we will comment on the future perspectives of CDs to inspire more ideas and efforts, with the aim of promoting diverse applications of CDs in supramolecular materials.
Collapse
Affiliation(s)
- Ting Gu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
9
|
Crivello G, Orlandini G, Morena AG, Torchio A, Mattu C, Boffito M, Tzanov T, Ciardelli G. Lignin-Cobalt Nano-Enabled Poly(pseudo)rotaxane Supramolecular Hydrogel for Treating Chronic Wounds. Pharmaceutics 2023; 15:1717. [PMID: 37376166 DOI: 10.3390/pharmaceutics15061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.
Collapse
Affiliation(s)
- Giulia Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giuliana Orlandini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Angela Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
10
|
Monajati M, Tamaddon AM, Abolmaali SS, Yousefi G, Javanmardi S, Borandeh S, Heidari R, Azarpira N, Dinarvand R. L-asparaginase immobilization in supramolecular nanogels of PEG-grafted poly HPMA and bis(α-cyclodextrin) to enhance pharmacokinetics and lower enzyme antigenicity. Colloids Surf B Biointerfaces 2023; 225:113234. [PMID: 36934612 DOI: 10.1016/j.colsurfb.2023.113234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
L-asparaginase (ASNase) enzyme has limited therapeutic use due to its poor pharmacokinetics and immunogenicity. To overcome these obstacles, we immobilized ASNase in biocompatible poly hydroxypropyl methacrylamide (P(HPMA))-based nanogels simply formed through the host-guest inclusion complex of ASNase-conjugated random copolymer of HPMA and polyethylene glycol (PEG) acrylate (P(HPMA-MPEGA)) and α-cyclodextrin dimer (bisCD) using cystamine as a linker. The effects of bisCD and polymer concentrations on particle size, gelation time, and recovery of enzyme activity were investigated. The ASNase-conjugated bisCD nanogels were discrete, homogeneous, and spherical with a mean projected diameter of 148 ± 41 nm. ASNase immobilized in the bisCD nanogels caused cytotoxicity on HL-60 cell line with IC50 of 3 IU/ml. In-vivo rat study revealed that the immobilized ASNase reduced the enzyme antigenicity and resulted in 8.1 folds longer circulation half-life than the native enzyme. Conclusively, immobilization of ASNase in P(HPMA-MPEGA) and bisCD supramolecular nanogels could enhance the therapeutic value of ASNase in cancer chemotherapy.
Collapse
Affiliation(s)
- Maryam Monajati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Gholamhossein Yousefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Sanaz Javanmardi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, the Islamic Republic of Iran.
| |
Collapse
|
11
|
Wang Y, Yuan K, Shang Z, Tan G, Zhong Q, He Y, Miao G, Lai K, Li Y, Wang X. Construction of nanohydrogels for enhanced delivery of hydrophilic and hydrophobic drugs and improving chemotherapy efficacy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Development and Optimization of Tamarind Gum-β-Cyclodextrin-g-Poly(Methacrylate) pH-Responsive Hydrogels for Sustained Delivery of Acyclovir. Pharmaceuticals (Basel) 2022; 15:ph15121527. [PMID: 36558978 PMCID: PMC9785578 DOI: 10.3390/ph15121527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Acyclovir has a short half-life and offers poor bioavailability. Its daily dose is 200 mg five times a day. A tamarind gum and β-cyclodextrin-based pH-responsive hydrogel network for sustained delivery of acyclovir was developed using the free-radical polymerization technique. Developed networks were characterized by FTIR, DSC, TGA, PXRD, EDX, and SEM. The effect of varying feed ratios of polymers, monomers, and crosslinker on the gel fraction, swelling, and release was also investigated. FTIR findings confirmed the compatibility of the ingredients in a new complex polymer. The thermal stability of acyclovir was increased within the newly synthesized polymer. SEM photomicrographs confirmed the porous texture of hydrogels. The gel fraction was improved (from 90.12% to 98.12%) with increased reactant concentrations. The pH of the dissolution medium and the reactant contents affected swelling dynamics and acyclovir release from the developed carrier system. Based on the R2 value, the best-fit model was zero-order kinetics with non-Fickian diffusion as a release mechanism. The biocompatibility of the developed network was confirmed through hematology, LFT, RFT, lipid profile, and histopathological examinations. No sign of pathology, necrosis, or abrasion was observed. Thus, a pH-responsive and biocompatible polymeric system was developed for sustained delivery of acyclovir to reduce the dosing frequency and improve patient compliance.
Collapse
|
13
|
Co-Delivery of 8-Hydroxyquinoline Glycoconjugates and Doxorubicin by Supramolecular Hydrogel Based on α-Cyclodextrin and pH-Responsive Micelles for Enhanced Tumor Treatment. Pharmaceutics 2022; 14:pharmaceutics14112490. [PMID: 36432680 PMCID: PMC9697330 DOI: 10.3390/pharmaceutics14112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The sustained release of multiple anti-cancer drugs using a single delivery carrier to achieve a synergistic antitumor effect remains challenging in biomaterials and pharmaceutics science. In this study, a supramolecular hydrogel based on the host-guest complexes between pH-responsive micelle derived poly(ethylene glycol) chains and α-cyclodextrin was designed for codelivery of two kinds of anti-cancer agents, hydrophilic 8-hydroxyquinoline glycoconjugate and hydrophobic doxorubicin. The host-guest interactions were characterized using X-ray diffraction and differential scanning calorimetry techniques. The resultant supramolecular hydrogel showed thixotropic properties, which are advantageous to drug delivery systems. In vitro release studies revealed that the supramolecular hydrogel exhibited faster drug release profiles in acidic conditions. The MTT assay demonstrated a synergistic cancer cell proliferation inhibition of DOX/8HQ-Glu mixture. In vitro cytotoxicity studies indicated excellent biocompatibility of the supramolecular hydrogel matrix, whereas the DOX/8HQ-Glu-loaded supramolecular hydrogel showed a sustained inhibition efficacy against cancer cells. The codelivery of hydrophobic anti-cancer drugs and hydrophilic anti-cancer drug glycoconjugates via a pH-responsive supramolecular hydrogel opens up new possibilities for the development of an effective cancer treatment based on the tumor-specific Warburg effect.
Collapse
|
14
|
Recent studies on modulating hyaluronic acid-based hydrogels for controlled drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
|
16
|
Monajati M, Tamaddon AM, Abolmaali SS, Yousefi G, Jafari M, Heidari R, Borandeh S, Azarpira N, Dinarvand R. Novel self-assembled nanogels of PEG-grafted poly HPMA with bis(α-cyclodextrin) containing disulfide linkage: synthesis, bio-disintegration, and in vivo biocompatibility. NEW J CHEM 2022. [DOI: 10.1039/d1nj05974b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of self-assembled nanogels of PEG-grafted poly HPMA with bis(α-cyclodextrin) containing disulfide linkage.
Collapse
Affiliation(s)
- Maryam Monajati
- Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Yousefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Polymer Technology Research Group, Department of Chemical and Metallurgical Engineering, Aalto University, 02152 Espoo, Finland
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021; 9:1612. [PMID: 34829843 PMCID: PMC8615759 DOI: 10.3390/biomedicines9111612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
18
|
Self-assembled biocompatible heparin-based supramolecular hydrogel for doxorubicin delivery. Carbohydr Res 2021; 511:108464. [PMID: 34741880 DOI: 10.1016/j.carres.2021.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
An array of self-assembled biocompatible doxorubicin (DOX) loaded heparin--cyclodextrin supramolecular hydrogels (DOX@HGs) with highly encapsulated efficiency was constructed using heparin-β-cyclodextrin derivatives (Hep-β-CD), α-cyclodextrin (α-CD), pluronic F-127 and DOX via the synergy of host-guest and multiple hydrogen bonding interactions. These hydrogels were characterized by GPC measurements (GPC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Size and zeta potential determinations, X-ray diffraction (XRD), and rheological characteristics; the data confirmed successful formation of the hydrogels. Furthermore, these hydrogels demonstrated distinctive thixotropy, indicating rapid self-repairing after continuously oscillatory shear stress. Variable release of DOX from DOX @HGs was obtained at various pH after 84 h depending on the strength of the hydrogels. At pH 7.4, cumulative DOX release was approximately 49.07% for DOX@HG 1, 32.15% for DOX@HG 2, and 27.12% for DOX@HG 3. While at pH 5.5, release of DOX was increased to 59.08% for DOX@HG 1 and to 43.2% for DOX@HG 3 after 84 h (P < 0.05). This information demonstrated that a higher DOX release rate was observed under a lower pH due to strong charge expansion of CDs and weakening of electrostatic interactions between heparin and DOX. Additionally, cytotoxicity of free DOX and DOX@HGs in ovarian cancer SKOV-3 cells was studied at various exposure durations. The results revealed that cytotoxicity of DOX@HG 1-3 toward ovarian cancer SKOV-3 cells was lower than that of free DOX (P < 0.05), suggesting prolonged DOX release from the hydrogels in SKOV-3 cells.
Collapse
|
19
|
Moriwaki M, Kito K, Nakagawa R, Kapoor MP, Matsumiya Y, Fukuhara T, Kamiya U. Bioavailability comparison between a compound comprising hesperetin-7-glucoside with β-cyclodextrin and a mixture of hesperidin and dextrin in healthy adult human males. Biosci Biotechnol Biochem 2021; 85:2195-2199. [PMID: 34347032 DOI: 10.1093/bbb/zbab139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
The pharmacokinetics of compounds comprising hesperetin-7-glucoside with β-cyclodextrin and physically mixed hesperidin/dextrin was compared in 8 healthy adult male subjects in a nonrandomized, double-blind, cross-over, controlled study. For 0-24 h, the area under the curve of the total plasma hesperetin concentration after hesperetin-7-glucoside with β-cyclodextrin consumption was >100-fold higher than that after hesperidin/dextrin consumption.
Collapse
Affiliation(s)
- Masamitsu Moriwaki
- Taiyo Kagaku Co., Ltd, Nutrition Division, Takaramachi, Yokkaichi, Mie, Japan
| | - Kento Kito
- Taiyo Kagaku Co., Ltd, Nutrition Division, Takaramachi, Yokkaichi, Mie, Japan
| | - Ryo Nakagawa
- Taiyo Kagaku Co., Ltd, Nutrition Division, Takaramachi, Yokkaichi, Mie, Japan
| | - Mahendra P Kapoor
- Taiyo Kagaku Co., Ltd, Nutrition Division, Takaramachi, Yokkaichi, Mie, Japan
| | - Yoshiki Matsumiya
- Taiyo Kagaku Co., Ltd, Nutrition Division, Takaramachi, Yokkaichi, Mie, Japan
| | - Tomohisa Fukuhara
- Taiyo Kagaku Co., Ltd, Nutrition Division, Takaramachi, Yokkaichi, Mie, Japan
| | - Uguri Kamiya
- Kaiseikai Medical Corporation, Kita-Shin Yokohama, Kanagawa, Japan
| |
Collapse
|
20
|
Wang J, Yang C, Xie Y, Chen X, Jiang T, Tian J, Hu S, Lu Y. Application of Bioactive Hydrogels for Functional Treatment of Intrauterine Adhesion. Front Bioeng Biotechnol 2021; 9:760943. [PMID: 34621732 PMCID: PMC8490821 DOI: 10.3389/fbioe.2021.760943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Intrauterine adhesion (IUA) is a common endometrial disease and one of the main causes of infertility in women of childbearing age. Current treatment strategies, such as hysteroscopic adhesion resection, hysteroscopic transcervical resection of adhesion (TCRA), the use of local hormone drugs, and anti-adhesion scaffold implantation, do not provide a satisfactory pregnancy outcome for moderate-severe IUA, which presents a great challenge in reproductive medicine. With the development of material engineering, various bioactive and functional hydrogels have been developed using natural and synthetic biomaterials. These hydrogels are not only used as barely physical barriers but are also designed as vectors of hormone drugs, growth factors, and stem cells. These characteristics give bioactive hydrogels potentially important roles in the prevention and treatment of IUA. However, there is still no systematic review or consensus on the current advances and future research direction in this field. Herein, we review recent advances in bioactive hydrogels as physical anti-adhesion barriers, in situ drug delivery systems, and 3D cell delivery and culture systems for seeded cells in IUA treatment. In addition, current limitations and future perspectives are presented for further research guidance, which may provide a comprehensive understanding of the application of bioactive hydrogels in intrauterine adhesion treatment.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Chao Yang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yuxin Xie
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Xiaoxu Chen
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Ting Jiang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Jing Tian
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Sihui Hu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
21
|
|
22
|
Sardaru MC, Rosca I, Morariu S, Ursu EL, Ghiarasim R, Rotaru A. Injectable Thixotropic β-Cyclodextrin-Functionalized Hydrogels Based on Guanosine Quartet Assembly. Int J Mol Sci 2021; 22:ijms22179179. [PMID: 34502085 PMCID: PMC8431444 DOI: 10.3390/ijms22179179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Facile method for the preparation of β–cyclodextrin–functionalized hydrogels based on guanosine quartet assembly was described. A series of seven hydrogels were prepared by linking β–cyclodextrin molecules with guanosine moieties in different ratios through benzene–1,4–diboronic acid linker in the presence of potassium hydroxide. The potassium ions acted as a reticulation agent by forming guanosine quartets, leading to the formation of self–sustained transparent hydrogels. The ratios of the β–cyclodextrin and guanosine components have a significant effect on the internal structuration of the components and, correspondingly, on the mechanical properties of the final gels, offering a tunablity of the system by varying the components ratio. The insights into the hydrogels’ structuration were achieved by circular dichroism, scanning electron microscopy, atomic force microscopy, and X–ray diffraction. Rheological measurements revealed self–healing and thixotropic properties of all the investigated samples, which, in combination with available cyclodextrin cavities for active components loading, make them remarkable candidates for specific applications in biomedical and pharmaceutical fields. Moreover, all the prepared samples displayed selective antimicrobial properties against S. aureus in planktonic and biofilm phase, the activity also depending on the guanosine and cyclodextrin ratio within the hydrogel structure.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Simona Morariu
- Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania;
| | - Elena-Laura Ursu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Razvan Ghiarasim
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Alexandru Rotaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
- Correspondence:
| |
Collapse
|
23
|
Hwang C, Lee SY, Kim HJ, Lee K, Lee J, Kim DD, Cho HJ. Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohydr Polym 2021; 266:118104. [PMID: 34044922 DOI: 10.1016/j.carbpol.2021.118104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.5 for dopamine polymerization. Poly(lactic-co-glycolic acid) (PLGA)/donepezil microsphere (PDM) was embedded into the HD-PEG network for its sustained release. The HD-PEG/α-CD/PDM 8.5 hydrogel system exhibited an immediate gelation pattern, injectability through single syringe, self-healing ability, and shear-thinning behavior. Donepezil was released from the HD-PEG/α-CD/PDM 8.5 hydrogel in a sustained pattern. Following subcutaneous injection, the weight of excised HD-PEG/α-CD/PDM 8.5 hydrogel was higher than the other groups on day 14. These findings support the clinical feasibility of the HD-PEG/α-CD/PDM 8.5 hydrogel for subcutaneous injection.
Collapse
Affiliation(s)
- ChaeRim Hwang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
24
|
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021; 12:710199. [PMID: 34475862 PMCID: PMC8406695 DOI: 10.3389/fmicb.2021.710199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The "state-of-the-art" antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112212. [PMID: 34225864 DOI: 10.1016/j.msec.2021.112212] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of people worldwide are affected by eye diseases, eventually leading to visual impairment or complete blindness. Conventional treatment involves the use of eye drops. However, these formulations often confer low ocular bioavailability and frequent dosing is required. Therefore, there is an urgent need to develop more effective drug delivery systems to tackle the current limitations. Hydrogels are multifunctional ophthalmic drug delivery systems capable of extending drug residence time and sustaining release of drugs. In this review, common ocular diseases and corresponding therapeutic drugs are briefly introduced. In addition, various types of hydrogels reported for ophthalmic drug delivery, including in-situ gelling hydrogels, contact lenses, low molecular weight supramolecular hydrogels, cyclodextrin/poly (ethylene glycol)-based supramolecular hydrogels and hydrogel-forming microneedles, are summarized. Besides, marketed hydrogel-based opthalmic formulations and clinical trials are also highlighted. Finally, critical considerations regarding clinical translation of biologics-loaded hydrogels are discussed.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xuewen Yang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Bo Tang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
26
|
Torchio A, Cassino C, Lavella M, Gallina A, Stefani A, Boffito M, Ciardelli G. Injectable supramolecular hydrogels based on custom-made poly(ether urethane)s and α-cyclodextrins as efficient delivery vehicles of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112194. [PMID: 34225848 DOI: 10.1016/j.msec.2021.112194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
A strategy to enhance drug effectiveness while minimizing controversial effects consists in exploiting host-guest interactions. Moreover, these phenomena can induce the self-assembly of physical hydrogels as effective tools to treat various pathologies (e.g., chronic wounds or cancer). Here, two Poloxamers®/Pluronics® (P407/F127 and P188/F68) were utilized to synthesize various LEGO-like poly(ether urethane)s (PEUs) to develop a library of tunable and injectable supramolecular hydrogels for drug delivery. Three PEUs were synthesized by chain extending Poloxamer/Pluronic with 1,6-cyclohexanedimethanol or N-Boc serinol. Other two amino-functionalized and highly responsive polymers were obtained thorough Boc-group cleavage. For hydrogel design, the spontaneous self-assembly of the poly(ethylene oxide) domains of PEUs with α-cyclodextrins was exploited to form poly(pseudo)rotaxanes (PPRs). PPR-derived channel-like crystals were characterized by X-Ray powder diffraction, Infra-Red and Proton Nuclear Magnetic Resonance spectroscopies. Cytocompatible hydrogel formulations were designed at PEU concentrations between 1% and 5% w/v and α-cyclodextrin at 10% w/v. Supramolecular gels showed good mechanical performances (storage modulus up to 20 kPa) coupled with marked thixotropic and self-healing properties (mechanical recovery over 80% within 30 s after cyclic rupture) as assessed through rheology. Hydrogels exhibited stability and high responsiveness in watery environment up to 5 days: the release of less stable components as suitable drug carriers was coupled with high swelling (doubling the content of fluids with respect to their dry mass) and shape retention. Curcumin was encapsulated into the hydrogels at high concentration (80 μg ml-1) through its complexation with α-cyclodextrins and delivery tests showed controllable and progressive release profiles up to four days.
Collapse
Affiliation(s)
- Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Surgical Sciences, Università degli Studi di Torino, Corso Dogliotti, 14, 10126 Torino, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mario Lavella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Management, Information and Production Engineering (DIGIP), Università degli Studi di Bergamo, Viale G. Marconi, 5, 24044 Dalmine, BG, Italy
| | - Andrea Gallina
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Alice Stefani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Chemical and Biological Laboratory Safe S.r.l., Via di Mezzo 48, 41037 Mirandola, MO, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
27
|
Kato K, Onishi K, Maeda K, Yagyu M, Fa S, Ichikawa T, Mizuno M, Kakuta T, Yamagishi TA, Ogoshi T. Thermally Responsive Poly(ethylene oxide)-Based Polyrotaxanes Bearing Hydrogen-Bonding Pillar[5]arene Rings*. Chemistry 2021; 27:6435-6439. [PMID: 33543802 DOI: 10.1002/chem.202005099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Indexed: 11/09/2022]
Abstract
Poly(ethylene oxide)s (PEOs) are useful polymers with good water solubility, biological compatibility, and commercial availability. PEOs with various end groups were threaded into pillar[5]arene rings in a mixture of water and methanol to afford pseudopolyrotaxanes. Corresponding polyrotaxanes were also constructed by capping COOH-terminated pseudopolyrotaxanes with bulky amines, in which multiple hydrogen bonds involving the pillar[5]arene OH groups were critically important to prevent dethreading. The number of threaded ring components could be rationally controlled in these materials, providing a simple and versatile method to tune the mechanical and thermal properties. Specifically, a polyrotaxane with a high-molecular-weight axle became elastic upon heating above the melting point of PEOs and exhibited temperature-dependent shape memory property because of the topological confinement and crosslinked hydrogen bonds.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Takahiro Ichikawa
- Department of Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo, 1848588, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| |
Collapse
|
28
|
Domiński A, Konieczny T, Duale K, Krawczyk M, Pastuch-Gawołek G, Kurcok P. Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E2890. [PMID: 33276597 PMCID: PMC7761607 DOI: 10.3390/polym12122890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles based on amphiphilic copolymers with tunable physicochemical properties can be used to encapsulate delicate pharmaceutics while at the same time improving their solubility, stability, pharmacokinetic properties, reducing immune surveillance, or achieving tumor-targeting ability. Those nanocarriers based on biodegradable aliphatic polycarbonates are a particularly promising platform for drug delivery due to flexibility in the design and synthesis of appropriate monomers and copolymers. Current studies in this field focus on the design and the synthesis of new effective carriers of hydrophobic drugs and their release in a controlled manner by exogenous or endogenous factors in tumor-specific regions. Reactive groups present in aliphatic carbonate copolymers, undergo a reaction under the action of a stimulus: e.g., acidic hydrolysis, oxidation, reduction, etc. leading to changes in the morphology of nanoparticles. This allows the release of the drug in a highly controlled manner and induces a desired therapeutic outcome without damaging healthy tissues. The presented review summarizes the current advances in chemistry and methods for designing stimuli-responsive nanocarriers based on aliphatic polycarbonates for controlled drug delivery.
Collapse
Affiliation(s)
- Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Tomasz Konieczny
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| |
Collapse
|
29
|
Uchida N, Muraoka T. Current Progress in Cross-Linked Peptide Self-Assemblies. Int J Mol Sci 2020; 21:E7577. [PMID: 33066439 PMCID: PMC7589166 DOI: 10.3390/ijms21207577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
30
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
31
|
Periasamy R. A systematic review on the significant roles of cyclodextrins in the construction of supramolecular systems and their potential usage in various fields. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1792919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- R. Periasamy
- Department of Chemistry, Annamalai University, Annamalainagar, India
| |
Collapse
|