1
|
Gungordu Er S, Bulathsinghala R, Kizilates SB, Li B, Ryan R, Tabish TA, Dharmasena I, Edirisinghe M. Multifunctional Conductive Nanofibers for Self-Powered Glucose Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416320. [PMID: 39965077 DOI: 10.1002/advs.202416320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Electrochemical glucose biosensors are essential for diabetes management, and self-powered systems present an eco-friendly and innovative alternative. Traditional biosensors face several limitations including limited sensitivity, enzyme instability, and dependency on external power sources. Addressing these issues, the study develops a novel multifunctional nanofiber integrating biosensor for glucose detection and a self-powered motion sensor, utilizing an innovative triboelectric nanogenerator (TENG) system. Electrospun nanofibers, composed of graphene oxide (GO), porous graphene (PG), graphene foam (GF), polypyrrole (PPy), and polycaprolactone (PCL), demonstrate enhanced electrical conductivity, triboelectric efficiency, and mechanical strength. Among these, dip-coated nanofibers exhibited the highest conductivity of 4.9 × 10⁻⁵ S/cm, attributed to superior surface electrical properties of GO. PCL/PPy/GO nanofibers achieved the highest glucose detection performance in cyclic voltammetry and differential pulse voltammetry due to efficient electron transfer mechanisms of GO and PPy. Additionally, triboelectric tests revealed peak voltages of 63V with PCL/PPy/GO and polyvinylidene fluoride nanofibers containing glucose oxidase enzyme. Core-sheath and dip-coated nanofibers also demonstrated significant mechanical resilience (∼0.9 N force, ∼350 s durability). These findings highlight PCL/PPy/GO nanofibers as a multifunctional, efficient, and scalable solution, offering highly sensitive glucose detection and non-invasive sweat analysis along with robust energy harvesting for environmentally friendly and advanced diabetes management systems.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Rameesh Bulathsinghala
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | | | - Bing Li
- The Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Rucchi Ryan
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Tanveer A Tabish
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Radcliffe Department of Medicine, University of Oxford, Old Road, Oxford, OX3 7BN, UK
| | - Ishara Dharmasena
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
2
|
Slejko EA, Carraro G, Huang X, Smerieri M. Advances in the Fabrication, Properties, and Applications of Electrospun PEDOT-Based Conductive Nanofibers. Polymers (Basel) 2024; 16:2514. [PMID: 39274146 PMCID: PMC11398091 DOI: 10.3390/polym16172514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
The production of nanofibers has become a significant area of research due to their unique properties and diverse applications in various fields, such as biomedicine, textiles, energy, and environmental science. Electrospinning, a versatile and scalable technique, has gained considerable attention for its ability to fabricate nanofibers with tailored properties. Among the wide array of conductive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising material due to its exceptional conductivity, environmental stability, and ease of synthesis. The electrospinning of PEDOT-based nanofibers offers tunable electrical and optical properties, making them suitable for applications in organic electronics, energy storage, biomedicine, and wearable technology. This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into leveraging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers. Furthermore, the review identifies current challenges, future directions, and potential strategies to address scalability, reproducibility, stability, and integration into practical devices, offering a comprehensive resource on conductive nanofibers.
Collapse
Affiliation(s)
- Emanuele Alberto Slejko
- IMEM-CNR, Institute of Materials for Electronics and Magnetism of the National Research Council of Italy, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giovanni Carraro
- IMEM-CNR, Institute of Materials for Electronics and Magnetism of the National Research Council of Italy, Via Dodecaneso 33, 16146 Genova, Italy
| | - Xiongchuan Huang
- School of Information Science and Technology, Fudan University, Handan Rd. 220, Shanghai 200433, China
| | - Marco Smerieri
- IMEM-CNR, Institute of Materials for Electronics and Magnetism of the National Research Council of Italy, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
3
|
Fong YX, Pakrath C, Kadavan FSP, Nguyen TT, Luu TQ, Stoilov B, Bright R, Nguyen MT, Ninan N, Tang Y, Vasilev K, Truong VK. Antibacterial Electrospun Membrane with Hierarchical Bead-on-String Structured Fibres for Wound Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1429. [PMID: 39269091 PMCID: PMC11397722 DOI: 10.3390/nano14171429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Chronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this work is to enhance the critical variables of ciprofloxacin-loaded polycaprolactone-silk sericin (PCL/SS-PVA-CIP) nanofibre production via the process of electrospinning. To examine the antibacterial effectiveness of PCL/SS-PVA-CIP nanocomposites, the material was tested against P. aeruginosa and S. aureus. The combination of PCL/SS-PVA-CIP exhibited potent inhibitory properties, with the most effective concentrations of ciprofloxacin (CIP) being 3 μg/g and 7.0 μg/g for each bacterium, respectively. The biocompatibility was evaluated by conducting cell reduction and proliferation studies using the human epidermal keratinocyte (HaCaT) cells and human gingival fibroblasts (HGFs) in vitro cell lines. The PCL/SS-PVA-CIP showed good cell compatibility with HaCaT and HGF cells, with effective proliferation even at antibiotic doses of up to 7.0 μg/g. The drug release effectiveness of the nanocomposites was assessed at various concentrations of CIP, resulting in a maximum cumulative release of 76.5% and 74.4% after 72 h for CIP concentrations of 3 μg/g and 7 μg/g, respectively. In summary, our study emphasizes the possibility of combining silk sericin (SS) and polycaprolactone (PCL) loading with CIP nanocomposite for wound management.
Collapse
Affiliation(s)
- Yu Xuan Fong
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Catherine Pakrath
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - Tien Thanh Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Trong Quan Luu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Borislav Stoilov
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Manh Tuong Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
4
|
Jamali Alyani S, Dadvand Koohi A, Ashraf Talesh SS, Ebrahimian Pirbazari A. Investigation of TiO 2/PPy nanocomposite for photocatalytic applications; synthesis, characterization, and combination with various substrates: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42521-42546. [PMID: 38878243 DOI: 10.1007/s11356-024-33893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The use of photocatalysis technology, specifically visible light photocatalysis that relies on sustainable solar energy, is the most promising for the degradation of contaminants. The interaction of conducting polymer and titanium dioxide (TiO2) leads to the exchange that enhances the alteration of the semiconductor's surface and subsequently decreases the bandgap energy. Polypyrrole (PPy) and TiO2 nanocomposites have promising potential for photocatalytic degradation. Chemically and electrochemical polymerization are two predominant methods for adding inorganic nanoparticles to a conducting polymer host matrix. The most commonly utilized method for producing PPy/TiO2 nanocomposites is the in-situ chemical oxidative polymerization technique. Immobilizing PPy/TiO2 on substrates causes more charge carriers (electron/hole pairs) to be produced on the surface of TiO2 and enhances the rate of photocatalytic degradation compared to pure TiO2. The increased surface charge affects how electron/hole pairs are formed when visible light is used. This study provides a comprehensive investigation into the synthesis, characterization, application, efficiency, and mechanism of PPy/TiO2 nanocomposites in the photocatalytic degradation process of various pollutants. Furthermore, the effect of stabilizing the TiO2/PPy nanocomposite on various substrates will be investigated. In conclusion, the review outlines the ongoing challenges in utilizing these photocatalysts and highlights the essential concerns that require attention in future research. Its objective is to help researchers better understand photocatalysts and encourage their use in wastewater treatment.
Collapse
Affiliation(s)
- Sedigheh Jamali Alyani
- Chemical Engineering Department, Engineering Faculty, University of Guilan, Rasht, 41996-13776, Iran
| | - Ahmad Dadvand Koohi
- Chemical Engineering Department, Engineering Faculty, University of Guilan, Rasht, 41996-13776, Iran.
| | - S Siamak Ashraf Talesh
- Chemical Engineering Department, Engineering Faculty, University of Guilan, Rasht, 41996-13776, Iran
| | - Azadeh Ebrahimian Pirbazari
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| |
Collapse
|
5
|
Razzaq MY, Balk M, Mazurek-Budzyńska M, Schadewald A. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning. Polymers (Basel) 2023; 15:4029. [PMID: 37836078 PMCID: PMC10574948 DOI: 10.3390/polym15194029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Nature has always been a source of inspiration for the development of novel materials and devices. In particular, polymer actuators that mimic the movements and functions of natural organisms have been of great interest due to their potential applications in various fields, such as biomedical engineering, soft robotics, and energy harvesting. During recent years, the development and actuation performance of electrospun fibrous meshes with the advantages of high permeability, surface area, and easy functional modification, has received extensive attention from researchers. This review covers the recent progress in the state-of-the-art electrospun actuators based on commonly used polymers such as stimuli-sensitive hydrogels, shape-memory polymers (SMPs), and electroactive polymers. The design strategies inspired by nature such as hierarchical systems, layered structures, and responsive interfaces to enhance the performance and functionality of these actuators, including the role of biomimicry to create devices that mimic the behavior of natural organisms, are discussed. Finally, the challenges and future directions in the field, with a focus on the development of more efficient and versatile electrospun polymer actuators which can be used in a wide range of applications, are addressed. The insights gained from this review can contribute to the development of advanced and multifunctional actuators with improved performance and expanded application possibilities.
Collapse
Affiliation(s)
- Muhammad Yasar Razzaq
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, D-14513 Teltow, Germany
| | | | - Anke Schadewald
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| |
Collapse
|
6
|
Barbosa F, Garrudo FFF, Marques AC, Cabral JMS, Morgado J, Ferreira FC, Silva JC. Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications. Int J Mol Sci 2023; 24:13203. [PMID: 37686010 PMCID: PMC10488027 DOI: 10.3390/ijms241713203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue's fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies.
Collapse
Affiliation(s)
- Frederico Barbosa
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio F. F. Garrudo
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Ana C. Marques
- Departament of Chemical Engineering and CERENA—Center for Natural Resources and the Environment, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
8
|
Wu H, Li Z, Xu Z, Huang X, Guo W, Zhao J, Zhang J, Liu S, Tang M, Qiu Y, Yang G, Zhu J, Liu L, Wu Y, Lei W, Zhou P, Yin Z, Chen Z, Liu Y. On-skin biosensors for noninvasive monitoring of postoperative free flaps and replanted digits. Sci Transl Med 2023; 15:eabq1634. [PMID: 37099631 DOI: 10.1126/scitranslmed.abq1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Severe soft tissue defects and amputated digits are clinically common injuries. Primary treatments include surgical free flap transfer and digit replantation, but these can fail because of vascular compromise. Postoperative monitoring is therefore crucial for timely detection of vessel obstruction and survival of replanted digits and free flaps. However, current postoperative clinical monitoring methods are labor intensive and highly dependent on the experience of nurses and surgeons. Here, we developed on-skin biosensors for noninvasive and wireless postoperative monitoring based on pulse oximetry. The on-skin biosensor was made of polydimethylsiloxane with gradient cross-linking to create a self-adhesive and mechanically robust substrate that interfaces with skin. The substrate was shown to exhibit appropriate adhesion on one side for both high-fidelity measurements of the sensor and low risk of peeling injury to delicate tissues. The other side demonstrated mechanical integrity to facilitate flexible hybrid integration of the sensor. Validation studies using a model of vascular obstruction in rats demonstrated the effectiveness of the sensor in vivo. Clinical studies indicated that the on-skin biosensor was accurate and more responsive than current clinical monitoring methods in identifying microvascular conditions. Comparisons with existing monitoring techniques, including laser Doppler flowmetry and micro-lightguide spectrophotometry, further verified the sensor's accuracy and ability to identify both arterial and venous insufficiency. These findings suggest that this on-skin biosensor may improve postoperative outcomes in free flap and replanted digit surgeries by providing sensitive and unbiased data directly from the surgical site that can be remotely monitored.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhuo Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Guo
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jinwen Zhang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaoyu Liu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Miao Tang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yuqi Qiu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ganguang Yang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Juntong Zhu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lili Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yingjie Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Wei Lei
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Pan Zhou
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhouping Yin
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
9
|
Blachowicz T, Ehrmann A. Optical Properties of Electrospun Nanofiber Mats. MEMBRANES 2023; 13:441. [PMID: 37103868 PMCID: PMC10146296 DOI: 10.3390/membranes13040441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Electrospun nanofiber mats are usually applied in fields where their high specific surface area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical properties can be modified and become highly important for different applications, e.g., in sensing devices or solar cells, and sometimes for investigating their electronic or mechanical properties. This review gives an overview of typical optical properties of electrospun nanofiber mats, such as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission, dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction coefficient, showing which effects may occur and can be measured by which instruments or used for different applications.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Center for Science and Education, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
10
|
Diedkova K, Pogrebnjak AD, Kyrylenko S, Smyrnova K, Buranich VV, Horodek P, Zukowski P, Koltunowicz TN, Galaszkiewicz P, Makashina K, Bondariev V, Sahul M, Čaplovičová M, Husak Y, Simka W, Korniienko V, Stolarczyk A, Blacha-Grzechnik A, Balitskyi V, Zahorodna V, Baginskiy I, Riekstina U, Gogotsi O, Gogotsi Y, Pogorielov M. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892008 DOI: 10.1021/acsami.2c22780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kateryna Diedkova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Alexander D Pogrebnjak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Department of Motor Vehicles, Lublin University of Technology, Nadbystrzycka 38 A, Lublin 20-618, Poland
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Sergiy Kyrylenko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
| | - Kateryna Smyrnova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | | | - Pawel Horodek
- Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Street, Krakow 31-342, Poland
| | - Pawel Zukowski
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Tomasz N Koltunowicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Piotr Galaszkiewicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Kristina Makashina
- East-Kazakhstan State Technical University, D. Serikbayev Street, 19, Ust-Kamenogorsk 070000, Kazakhstan
| | - Vitaly Bondariev
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Martin Sahul
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | - Maria Čaplovičová
- Centre for Nanodiagnostics of Materials, Slovak University of Technology in Bratislava, 5 Vazovova Street, Bratislava 812 43, Slovakia
| | - Yevheniia Husak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Viktoriia Korniienko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Agnieszka Stolarczyk
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Vitalii Balitskyi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Ivan Baginskiy
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Una Riekstina
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Oleksiy Gogotsi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Yury Gogotsi
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| |
Collapse
|
11
|
Lim J, Choi S, Kim HS. Electrospinning behavior and piezoelectric property of
PVDF
/
PEDOT
:
PSS
composite web by
PEDOT
:
PSS
addition. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Jihwan Lim
- School of Chemical Engineering Pusan National University Busan Republic of Korea
- Institute of Advanced Organic Materials Pusan National University Busan Republic of Korea
| | - Sejin Choi
- School of Chemical Engineering Pusan National University Busan Republic of Korea
- Institute of Advanced Organic Materials Pusan National University Busan Republic of Korea
| | - Han Seong Kim
- School of Chemical Engineering Pusan National University Busan Republic of Korea
- Institute of Advanced Organic Materials Pusan National University Busan Republic of Korea
| |
Collapse
|
12
|
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:674. [PMID: 36839042 PMCID: PMC9967576 DOI: 10.3390/nano13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.
Collapse
|
13
|
Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. MATERIALS HORIZONS 2022; 9:2914-2948. [PMID: 36226580 DOI: 10.1039/d2mh00879c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.
Collapse
Affiliation(s)
- Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| | - Seyed Vahid Ebadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, I-16146 Genova, Italy
| | - Ahmad Bagheri
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universitate Dresden, Dresden 01062, Germany
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, Smart Materials, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022; 23:ijms231810519. [PMID: 36142432 PMCID: PMC9502833 DOI: 10.3390/ijms231810519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic modalities to treat urethral strictures are associated with several challenges and shortcomings. Therefore, significant strides have been made to develop strategies with minimal side effects and the highest therapeutic potential. In this framework, electrospun scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the native cells’ niches and provide essential microenvironmental cues for the safe transplantation of multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications, and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect repair process. First, the current status of electrospinning in urethral tissue engineering is presented. Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent preclinical studies are summarized and the current challenges are discussed.
Collapse
|
15
|
Electromagnetic Interference Shielding with Electrospun Nanofiber Mats—A Review of Production, Physical Properties and Performance. FIBERS 2022. [DOI: 10.3390/fib10060047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With a steadily increasing number of machines and devices producing electromagnetic radiation, especially, sensitive instruments as well as humans need to be shielded from electromagnetic interference (EMI). Since ideal shielding materials should be lightweight, flexible, drapable, thin and inexpensive, textile fabrics belong to the often-investigated candidates to meet these expectations. Especially, electrospun nanofiber mats are of significant interest since they can not only be produced relatively easily and cost efficiently, but they also enable the embedding of functional nanoparticles in addition to thermal or chemical post-treatments to reach the desired physical properties. This paper gives an overview of recent advances in nanofiber mats for EMI shielding, discussing their production, physical properties and typical characterization techniques.
Collapse
|
16
|
Electrospinning of Chitosan for Antibacterial Applications—Current Trends. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan is a natural biopolymer that can be suitable for a wide range of applications due to its biocompatibility, rigid structure, and biodegradability. Moreover, it has been proven to have an antibacterial effect against several bacteria strains by incorporating the advantages of the electrospinning technique, with which tailored nanofibrous scaffolds can be produced. A literature search is conducted in this review regarding the antibacterial effectiveness of chitosan-based nanofibers in the filtration, biomedicine, and food protection industries. The results are promising in terms of research into sustainable materials. This review focuses on the electrospinning of chitosan for antibacterial applications and shows current trends in this field. In addition, various aspects such as the parameters affecting the antibacterial properties of chitosan are presented, and the application areas of electrospun chitosan nanofibers in the fields of air and water filtration, food storage, wound treatment, and tissue engineering are discussed in more detail.
Collapse
|
17
|
Lopresti F, Pavia FC, Ceraulo M, Capuana E, Brucato V, Ghersi G, Botta L, La Carrubba V. Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering. J Biomed Mater Res A 2021; 109:2120-2136. [PMID: 33942505 PMCID: PMC8518812 DOI: 10.1002/jbm.a.37199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration.
Collapse
Affiliation(s)
| | | | - Manuela Ceraulo
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Elisa Capuana
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Valerio Brucato
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermoItaly
| | - Luigi Botta
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Vincenzo La Carrubba
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
- ATeN CenterUniversity of PalermoPalermoItaly
| |
Collapse
|
18
|
Oh J, Wen L, Tak H, Kim H, Kim G, Hong J, Chang W, Kim D, Yeom G. Radio Frequency Induction Welding of Silver Nanowire Networks for Transparent Heat Films. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4448. [PMID: 34442970 PMCID: PMC8400299 DOI: 10.3390/ma14164448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Transparent heat films (THFs) are attracting increasing attention for their usefulness in various applications, such as vehicle windows, outdoor displays, and biosensors. In this study, the effects of induction power and radio frequency on the welding characteristics of silver nanowires (Ag NWs) and Ag NW-based THFs were investigated. The results showed that higher induction frequency and higher power increased the welding of the Ag NWs through the nano-welding at the junctions of the Ag NWs, which produced lower sheet resistance, and improved the adhesion of the Ag NWs. Using the inductive welding condition of 800 kHz and 6 kW for 60 s, 100 ohm/sq of Ag NW thin film with 95% transmittance at 550 nm after induction heating could be decreased to 56.13 ohm/sq, without decreasing the optical transmittance. In addition, induction welding of the Ag NW-based THFs improved haziness, increased bending resistance, enabled higher operating temperature at a given voltage, and improved stability.
Collapse
Affiliation(s)
- Jisoo Oh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Long Wen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Hyunwoo Tak
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Heeju Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Gyowun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Jongwoo Hong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Wonjun Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Dongwoo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
| | - Geunyoung Yeom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.O.); (L.W.); (H.T.); (H.K.); (G.K.); (J.H.); (W.C.); (D.K.)
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
19
|
Ghorbani M, Ramezani S, Rashidi MR. Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. Int J Biol Macromol 2021; 184:648-665. [PMID: 34102239 DOI: 10.1016/j.ijbiomac.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Nanofibers have a particular benefit when delivering a spectrum of therapeutic drugs for diverse biomedical applications. Nanofibers are easily fabricated from cellulose acetate, chitosan, polycaprolactone, and other polymers with regulated morphology and release profiles due to nanotechnology's recent advancement. This review will provide the latest approaches to the fabrication of electrospun nanofibers containing herbal extracts, antimicrobial peptides, and antibiotics for wound-healing potential. Besides, synthesis and evaluation of nanofibrous mats, including conducting polymer and evaluate their possibility for wound healing. In addition, nanofibers are loaded with some drugs for skin cancer treatment and contain growth factors for tissue regeneration. Also, the current two-dimensional nanofibers limitations and the various techniques for convert two-dimensional to three-dimension nanofibers to avoid these drawbacks. Moreover, the future direction in improving the three-dimensional structure and functionality has been including.
Collapse
Affiliation(s)
- Asma M Alturki
- Department of Chemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| |
Collapse
|
21
|
Self Standing Mats of Blended Polyaniline Produced by Electrospinning. NANOMATERIALS 2021; 11:nano11051269. [PMID: 34065931 PMCID: PMC8151508 DOI: 10.3390/nano11051269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/26/2023]
Abstract
Conducting nanofibers of polyaniline (PANI) doped with camphor-10-sulfonic acid (HCSA) and blended with different polymers, such as polymethyl methacrylate (PMMA) and polyvinyl acetate (PVAc), have been fabricated using the electrospinning technique. Scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA) were utilized to characterize the morphology and the thermal stability of PANI-blended fibers. An extensive study was performed to understand the copolymer influence on both the structural and surface properties of the realized conductive thin films. Samples main electrical characteristics, as conductivity, specific capacitance and electrochemical performances were tested. The better mats were obtained with the use of PVAc copolymer, which showed a conductivity value two orders of magnitude higher than the PMMA system. Aiming at further improving the electrochemical features of these blended mats, hybrid fibers based on PANI/PVAc/graphene oxide and PANI/PVAc/iron oxide were also produced and characterized. The obtained mats were potentially addressed to numerous practical fields, including sensors, health applications, smart devices and multifunctional textile materials.
Collapse
|
22
|
Boyraz E, Yalcinkaya F. Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation. Polymers (Basel) 2021; 13:polym13020197. [PMID: 33430388 PMCID: PMC7827773 DOI: 10.3390/polym13020197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
In order to protect the environment, it is important that oily industrial wastewater is degreased before discharging. Membrane filtration is generally preferred for separation of oily wastewater as it does not require any specialised chemical knowledge, and also for its ease of processing, energy efficiency and low maintenance costs. In the present work, hybrid polyacrylonitrile (PAN) nanofibrous membranes were developed for oily wastewater filtration. Membrane surface modification changed nitrile groups on the surface into carboxylic groups, which improve membrane wettability. Subsequently, TiO2 nanoparticles were grafted onto the modified membranes to increase flux and permeability. Following alkaline treatment (NaOH, KOH) of the hydrolysed PAN nanofibres, membrane water permeability increased two- to eight-fold, while TiO2 grafted membrane permeability increase two- to thirteen-fold, compared to unmodified membranes. TiO2 grafted membranes also displayed amphiphilic properties and a decrease in water contact angle from 78.86° to 0°. Our results indicate that modified PAN nanofibrous membranes represent a promising alternative for oily wastewater filtration.
Collapse
Affiliation(s)
- Evren Boyraz
- Faculty of Mechatronics, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Fatma Yalcinkaya
- Centre for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
- Correspondence: ; Tel.: +42-04-8535-3389
| |
Collapse
|
23
|
Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ai Ling Pang
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Agus Arsad
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohsen Ahmadipour
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Penang Malaysia
| |
Collapse
|
24
|
Wortmann M, Layland AS, Frese N, Kahmann U, Grothe T, Storck JL, Blachowicz T, Grzybowski J, Hüsgen B, Ehrmann A. On the reliability of highly magnified micrographs for structural analysis in materials science. Sci Rep 2020; 10:14708. [PMID: 32895411 PMCID: PMC7477546 DOI: 10.1038/s41598-020-71682-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Highly magnified micrographs are part of the majority of publications in materials science and related fields. They are often the basis for discussions and far-reaching conclusions on the nature of the specimen. In many cases, reviewers demand and researchers deliver only the bare minimum of micrographs to substantiate the research hypothesis at hand. In this work, we use heterogeneous poly(acrylonitrile) nanofiber nonwovens with embedded nanoparticles to demonstrate how an insufficient or biased micrograph selection may lead to erroneous conclusions. Different micrographs taken by transmission electron microscopy and helium ion microscopy with sometimes contradictory implications were analyzed and used as a basis for micromagnetic simulations. With this, we try to raise awareness for the possible consequences of cherry-picking for the reliability of scientific literature.
Collapse
Affiliation(s)
- Martin Wortmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619, Bielefeld, Germany
| | | | - Natalie Frese
- Faculty of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Uwe Kahmann
- Zentrum für Ultrastrukturelle Diagnostik, 33615, Bielefeld, Germany
| | - Timo Grothe
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619, Bielefeld, Germany
| | - Jan Lukas Storck
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619, Bielefeld, Germany
| | - Tomasz Blachowicz
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Jacek Grzybowski
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Bruno Hüsgen
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619, Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619, Bielefeld, Germany.
| |
Collapse
|
25
|
Yusof MR, Shamsudin R, Zakaria S, Azmi Abdul Hamid M, Yalcinkaya F, Abdullah Y, Yacob N. Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning. Polymers (Basel) 2020; 12:polym12071593. [PMID: 32709111 PMCID: PMC7408529 DOI: 10.3390/polym12071593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers for potential applications as bone-tissue scaffolds. The composite nanofibers were prepared by electrospinning in the combination of 5% v/v carboxy-methyl starch (CMS) and 0.25 wt% of β-TCP with the PLLA as a matrix component. The composites nanofibers were exposed under 5, 30, and 100 kGy of irradiation dose. The electron-beam irradiation showed no morphological damage to the fibers, and slight reduction in the water-contact angle and mechanical strength at the higher-irradiation doses. The chain scission was found to be a dominant effect; the higher doses of electron-beam irradiation thus increased the in vitro degradation rate of the composite nanofibers. The chemical interaction due to irradiation was indicated by the Fourier transform infrared (FTIR) spectrum and thermal behavior was investigated by a differential scanning calorimeter (DSC). The results showed that the electron-beam-induced poly L-lactide acid/carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers may have great potential for bone-tissue engineering.
Collapse
Affiliation(s)
- Mohd Reusmaazran Yusof
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
- Correspondence: (M.R.Y.); (M.A.A.H.); (F.Y.); Tel.: +60-03-89213404 (M.R.Y.)
| | - Roslinda Shamsudin
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
| | - Sarani Zakaria
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
| | - Muhammad Azmi Abdul Hamid
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
- Correspondence: (M.R.Y.); (M.A.A.H.); (F.Y.); Tel.: +60-03-89213404 (M.R.Y.)
| | - Fatma Yalcinkaya
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
- Correspondence: (M.R.Y.); (M.A.A.H.); (F.Y.); Tel.: +60-03-89213404 (M.R.Y.)
| | - Yusof Abdullah
- Material Technology Group, Malaysian Nuclear Agency, Bangi, Kajang, 43300 Selangor, Malaysia;
| | - Norzita Yacob
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
| |
Collapse
|
26
|
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Ghayour H, Ismail AF, Nur H, Berto F. Electrospun Nano-Fibers for Biomedical and Tissue Engineering Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2153. [PMID: 32384813 PMCID: PMC7254207 DOI: 10.3390/ma13092153] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023]
Abstract
Pharmaceutical nano-fibers have attracted widespread attention from researchers for reasons such as adaptability of the electro-spinning process and ease of production. As a flexible method for fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret. Optimization of the attained nano-fibers is undertaken through manipulation of the variables of the process and formulation, including concentration, viscosity, molecular mass, and physical phenomenon, as well as the environmental parameters including temperature and humidity. The nano-fibers achieved by electro-spinning can be utilized for drug loading. The mixing of two or more medicines can be performed via electro-spinning. Facilitation or inhibition of the burst release of a drug can be achieved by the use of the electro-spinning approach. This potential is anticipated to facilitate progression in applications of drug release modification and tissue engineering (TE). The present review aims to focus on electro-spinning, optimization parameters, pharmacological applications, biological characteristics, and in vivo analyses of the electro-spun nano-fibers. Furthermore, current developments and upcoming investigation directions are outlined for the advancement of electro-spun nano-fibers for TE. Moreover, the possible applications, complications and future developments of these nano-fibers are summarized in detail.
Collapse
Affiliation(s)
- Shokoh Parham
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (S.P.); (A.Z.K.)
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (S.P.); (A.Z.K.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Hamid Ghayour
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor 81310, Malaysia;
| | - Hadi Nur
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM Skudai, Johor 81310, Malaysia;
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|