1
|
Cojocaru E, Oprea M, Vlăsceanu GM, Nicolae MC, Popescu RC, Mereuţă PE, Toader AG, Ioniţă M. Dual nanofiber and graphene reinforcement of 3D printed biomimetic supports for bone tissue repair. RSC Adv 2024; 14:32517-32532. [PMID: 39411258 PMCID: PMC11474446 DOI: 10.1039/d4ra06167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Replicating the intricate architecture of the extracellular matrix (ECM) is an actual challenge in the field of bone tissue engineering. In the present research study, calcium alginate/cellulose nanofibrils-based 3D printed scaffolds, double-reinforced with chitosan/polyethylene oxide electrospun nanofibers (NFs) and graphene oxide (GO) were prepared using the 3D printing technique. The porous matrix was provided by the calcium alginate, while the anisotropy degree and mechanical properties were ensured by the addition of fillers with different sizes and shapes (CNFs, NFs, GO), similar to the components naturally found in bone ECM. Surface morphology and 3D internal microstructure were analyzed using scanning electron microscopy (SEM) and micro-computed tomography (μ-CT), which evidenced a synergistic effect of the reinforcing and functional fibers addition, as well as of the GO sheets that seem to govern materials structuration. Also, the nanoindentation measurements showed significant differences in the elasticity and viscosity modulus, depending on the measurement point, this supported the anisotropic character of the scaffolds. In vitro assays performed on MG-63 osteoblast cells confirmed the biocompatibility of the calcium alginate-based scaffolds and highlighted the osteostimulatory and mineralization enhancement effect of GO. In virtue of their biocompatibility, structural complexity similar with the one of native bone ECM, and biomimetic mechanical characteristics (e.g. high mechanical strength, durotaxis), these novel materials were considered appropriate for specific functional needs, like guided support for bone tissue formation.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mădălina Oprea
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mădălina-Cristina Nicolae
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Roxana-Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- National Institute for Research and Development in Physics and Nuclear Engineering "Horia Hulubei", Department of Life and Environmental Physics 30 Reactor. Street Magurele Romania
| | - Paul-Emil Mereuţă
- National Institute for Research and Development in Physics and Nuclear Engineering "Horia Hulubei", Department of Applied Nuclear Physics 30 Reactor. Street Magurele Romania
| | - Alin-Georgian Toader
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mariana Ioniţă
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Center of Excellence in Bioengineering, National University of Science and Technology POLITEHNICA Bucharest 6 Iuliu Maniu Boulevard, Campus Building Bucharest 061344 Romania
| |
Collapse
|
2
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Re F, Sartore L, Pasini C, Ferroni M, Borsani E, Pandini S, Bianchetti A, Almici C, Giugno L, Bresciani R, Mutti S, Trenta F, Bernardi S, Farina M, Russo D. In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core-Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration. J Funct Biomater 2024; 15:217. [PMID: 39194655 DOI: 10.3390/jfb15080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core-shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin-chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration.
Collapse
Affiliation(s)
- Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Luciana Sartore
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Chiara Pasini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Matteo Ferroni
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy
- National Research Council (CNR)-Institute for Microelectronics and Microsystems, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisa Borsani
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Stefano Pandini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianchetti
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Camillo Almici
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Mutti
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Federica Trenta
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology-CN3, 35122 Padua, Italy
| | - Mirko Farina
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
4
|
Muresan GC, Boca S, Lucaciu O, Hedesiu M. The Applicability of Nanostructured Materials in Regenerating Soft and Bone Tissue in the Oral Cavity-A Review. Biomimetics (Basel) 2024; 9:348. [PMID: 38921228 PMCID: PMC11201588 DOI: 10.3390/biomimetics9060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Two of the most exciting new technologies are biotechnology and nanotechnology. The science of nanostructures, or nanotechnology, is concerned with the development, testing, and use of structures and molecules with nanoscale dimensions ranging from 1 to 100 nm. The development of materials and tools with high specificity that interact directly at the subcellular level is what makes nanotechnology valuable in the medical sciences. At the cellular or tissue level, this might be converted into focused clinical applications with the greatest possible therapeutic benefits and the fewest possible side effects. The purpose of the present study was to review the literature and explore the applicability of the nanostructured materials in the process of the regeneration of the soft and hard tissues of the oral cavity. MATERIALS AND METHODS An electronic search of articles was conducted in several databases, such as PubMed, Embase, and Web of Science, to conduct this study, and the 183 articles that were discovered were chosen and examined, and only 22 articles met the inclusion criteria in this review. RESULTS The findings of this study demonstrate that using nanoparticles can improve the mechanical properties, biocompatibility, and osteoinductivity of biomaterials. CONCLUSIONS Most recently, breakthroughs in tissue engineering and nanotechnology have led to significant advancements in the design and production of bone graft substitutes and hold tremendous promise for the treatment of bone abnormalities. The creation of intelligent nanostructured materials is essential for various applications and therapies, as it allows for the precise and long-term delivery of medication, which yields better results.
Collapse
Affiliation(s)
- Giorgiana Corina Muresan
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania;
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mihaela Hedesiu
- Department of Oral Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Valamvanos TF, Dereka X, Katifelis H, Gazouli M, Lagopati N. Recent Advances in Scaffolds for Guided Bone Regeneration. Biomimetics (Basel) 2024; 9:153. [PMID: 38534838 DOI: 10.3390/biomimetics9030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The rehabilitation of alveolar bone defects of moderate to severe size is often challenging. Currently, the therapeutic approaches used include, among others, the guided bone regeneration technique combined with various bone grafts. Although these techniques are widely applied, several limitations and complications have been reported such as morbidity, suboptimal graft/membrane resorption rate, low structural integrity, and dimensional stability. Thus, the development of biomimetic scaffolds with tailor-made characteristics that can modulate cell and tissue interaction may be a promising tool. This article presents a critical consideration in scaffold's design and development while also providing information on various fabrication methods of these nanosystems. Their utilization as delivery systems will also be mentioned.
Collapse
Affiliation(s)
- Theodoros-Filippos Valamvanos
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Xanthippi Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Greece Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Guo L, Han M, Zhang H, Han Y. Effect of chitosan/dioleyl phosphatidyl ethanolamine - Baicalein nanohydrogel in the treatment of rat with periodontitis. Heliyon 2024; 10:e25209. [PMID: 38356511 PMCID: PMC10864910 DOI: 10.1016/j.heliyon.2024.e25209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective this work aimed to investigate the effectiveness of chitosan (CS)/dioleyl phosphatidyl ethanolamine (DOPE) - baicalein (CS/DOPE-BAE) nanohydrogel as a novel drug delivery system for the treatment of periodontitis in rats. Materials and methods the CS/DOPE-BAE nanohydrogel was synthesized and characterized for its morphology, particle size (PS), drug loading, and release properties. A rat periodontitis model was established, and the rats were randomly assigned to four groups, receiving treatment of normal saline, CS/DOPE blank nanohydrogel, baicalein solution, and CS/DOPE-BAE nanohydrogel through local injection, respectively. Clinical symptoms, periodontal tissue morphology, and the levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-10 in the periodontal tissue were observed and compared. Results the CS/DOPE-BAE nanohydrogel exhibited a spherical shape with a PS of approximately 200 nm and a drug loading of 8.6 %. It demonstrated excellent sustained-release properties. The group treated with CS/DOPE-BAE nanohydrogel showed significant improvement in clinical symptoms, such as reduced gingival redness and bleeding in rats, decreased inflammatory cell infiltration, and weakened fibroblast proliferation in the periodontal tissue. Additionally, IL-1β and TNF-α levels were downregulated, while IL-10 level was elevated. Conclusion the CS/DOPE-BAE nanohydrogel was an effective baicalein delivery system that can inhibit the progression of periodontitis, improve the inflammatory response in periodontal tissue, and deliver promising therapeutic effects.
Collapse
Affiliation(s)
| | | | - Hongyan Zhang
- Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yan Han
- Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
8
|
Alavi SE, Gholami M, Shahmabadi HE, Reher P. Resorbable GBR Scaffolds in Oral and Maxillofacial Tissue Engineering: Design, Fabrication, and Applications. J Clin Med 2023; 12:6962. [PMID: 38002577 PMCID: PMC10672220 DOI: 10.3390/jcm12226962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Guided bone regeneration (GBR) is a promising technique in bone tissue engineering that aims to replace lost or injured bone using resorbable scaffolds. The promotion of osteoblast adhesion, migration, and proliferation is greatly aided by GBR materials, and surface changes are critical in imitating the natural bone structure to improve cellular responses. Moreover, the interactions between bioresponsive scaffolds, growth factors (GFs), immune cells, and stromal progenitor cells are essential in promoting bone regeneration. This literature review comprehensively discusses various aspects of resorbable scaffolds in bone tissue engineering, encompassing scaffold design, materials, fabrication techniques, and advanced manufacturing methods, including three-dimensional printing. In addition, this review explores surface modifications to replicate native bone structures and their impact on cellular responses. Moreover, the mechanisms of bone regeneration are described, providing information on how immune cells, GFs, and bioresponsive scaffolds orchestrate tissue healing. Practical applications in clinical settings are presented to underscore the importance of these principles in promoting tissue integration, healing, and regeneration. Furthermore, this literature review delves into emerging areas of metamaterials and artificial intelligence applications in tissue engineering and regenerative medicine. These interdisciplinary approaches hold immense promise for furthering bone tissue engineering and improving therapeutic outcomes, leading to enhanced patient well-being. The potential of combining material science, advanced manufacturing, and cellular biology is showcased as a pathway to advance bone tissue engineering, addressing a variety of clinical needs and challenges. By providing this comprehensive narrative, a detailed, up-to-date account of resorbable scaffolds' role in bone tissue engineering and their transformative potential is offered.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran;
| | - Peter Reher
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| |
Collapse
|
9
|
Shopova D, Mihaylova A, Yaneva A, Bakova D. Advancing Dentistry through Bioprinting: Personalization of Oral Tissues. J Funct Biomater 2023; 14:530. [PMID: 37888196 PMCID: PMC10607235 DOI: 10.3390/jfb14100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| |
Collapse
|
10
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Tan L, Li Y, Hu X, Lu M, Zhang Y, Gan Y, Tu C, Min L. Clinical evaluation of the three-dimensional printed strut-type prosthesis combined with autograft reconstruction for giant cell tumor of the distal femur. Front Oncol 2023; 13:1206765. [PMID: 37675226 PMCID: PMC10479807 DOI: 10.3389/fonc.2023.1206765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Propose This study aimed to describe the design and surgical techniques of a three-dimensional (3D) printed strut-type prosthesis with a porous titanium surface for distal femur giant cell tumors of bone (GCTB) and evaluate the short-term clinical outcomes. Methods From June 2018 to January 2021, 9 consecutive patients with grade I or II GCTB in the distal femur underwent extended intralesional curettage followed by 3D-printed strut-type prosthesis combined with autograft reconstruction were retrospectively reviewed to assess their clinical and radiographic outcomes. Results All patients were followed up for 30.8 ± 7.5 months (18-42 months) after surgery. The mean affected subchondral bone percentage and the mean subchondral bone thickness before surgery was 31.8% ± 9.6% (range, 18.2% ~50.2%) and 2.2 ± 0.8 mm (range, 1.2-4.0 mm), respectively. At the final follow-up, all the patients were alive without local recurrence; no postoperative complications were observed. Patients had significant improvements in postoperative MSTS-93 score [(26.7 ± 2.4) vs. (18.8 ± 3.7), P < 0.05], and ROM [(122.8° ± 9.1°) vs. (108.3° ± 6.1°), P < 0.05] compared with their preoperative statuses. Furthermore, the mean subchondral bone thickness has increased to 10.9 ± 1.3 mm (range, 9.1-12.1 mm). Conclusion 3D-printed strut-type prosthesis combined with autograft reconstruction provides acceptable early functional and radiographic outcomes in patients with grade I or II GCTB in distal femur due to the advantages of the prosthesis such as good biocompatibility, osseointegration capacity, and subchondral bone protection. If our early outcomes can be further validated in studies with more patients and sufficient follow-up, this method may be evaluated as an alternative for the treatment of grade I or II GCTB in the distal femur.
Collapse
Affiliation(s)
- Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Li
- Department of Orthopedics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiong Gan
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Barros Araújo CB, da Silva Soares IL, da Silva Lima DP, Barros RM, de Lima Damasceno BPG, Oshiro-Junior JA. Polyvinyl Alcohol Nanofibers Blends as Drug Delivery System in Tissue Regeneration. Curr Pharm Des 2023; 29:1149-1162. [PMID: 37157221 DOI: 10.2174/1381612829666230508144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were "nanofibers", "poly (vinyl alcohol)", "muscle tissue", "connective tissue", "epithelial tissue", and "neural tissue engineering". The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.
Collapse
Affiliation(s)
- Camila Beatriz Barros Araújo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Ingrid Larissa da Silva Soares
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| | - Diego Paulo da Silva Lima
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Rafaella Moreno Barros
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| |
Collapse
|
13
|
Xie C, Rashed F, Sasaki Y, Khan M, Qi J, Kubo Y, Matsumoto Y, Sawada S, Sasaki Y, Ono T, Ikeda T, Akiyoshi K, Aoki K. Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model. Int J Mol Sci 2023; 24:ijms24119751. [PMID: 37298702 DOI: 10.3390/ijms24119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The receptor activator of NF-κB ligand (RANKL)-binding peptide is known to accelerate bone morphogenetic protein (BMP)-2-induced bone formation. Cholesterol-bearing pullulan (CHP)-OA nanogel-crosslinked PEG gel (CHP-OA nanogel-hydrogel) was shown to release the RANKL-binding peptide sustainably; however, an appropriate scaffold for peptide-accelerated bone formation is not determined yet. This study compares the osteoconductivity of CHP-OA hydrogel and another CHP nanogel, CHP-A nanogel-crosslinked PEG gel (CHP-A nanogel-hydrogel), in the bone formation induced by BMP-2 and the peptide. A calvarial defect model was performed in 5-week-old male mice, and scaffolds were placed in the defect. In vivo μCT was performed every week. Radiological and histological analyses after 4 weeks of scaffold placement revealed that the calcified bone area and the bone formation activity at the defect site in the CHP-OA hydrogel were significantly lower than those in the CHP-A hydrogel when the scaffolds were impregnated with both BMP-2 and the RANKL-binding peptide. The amount of induced bone was similar in both CHP-A and CHP-OA hydrogels when impregnated with BMP-2 alone. In conclusion, CHP-A hydrogel could be an appropriate scaffold compared to the CHP-OA hydrogel when the local bone formation was induced by the combination of RANKL-binding peptide and BMP-2, but not by BMP-2 alone.
Collapse
Affiliation(s)
- Cangyou Xie
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Fatma Rashed
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Oral Biology, Faculty of Dentistry, Damanhour University, Damanhour 22511, Egypt
| | - Yosuke Sasaki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Jia Qi
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yuri Kubo
- Department of AI Technology Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yoshiro Matsumoto
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
14
|
Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J Funct Biomater 2023; 14:290. [PMID: 37367254 DOI: 10.3390/jfb14060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated. This article aims to review the recent advancements in nanomaterials applied for periodontal tissue regeneration and to discuss future research directions in this field, especially focusing on research using nanomaterials to improve oral health. The biomimetic and physiochemical properties of nanomaterials such as metals and polymer composites are described in detail, including their effects on the regeneration of alveolar bone, periodontal ligament, cementum and gingiva. Finally, the biomedical safety issues of their application as regenerative materials are updated, with a discussion about their complications and future perspectives. Although the applications of bioactive nanomaterials in the oral cavity are still at an initial stage, and pose numerous challenges, recent research suggests that they are a promising alternative in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute, Faculty of Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Center for Dentofacial Development and Sleep Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. NANOSCALE 2023; 15:5992-6008. [PMID: 36896757 DOI: 10.1039/d2nr06149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is an infection-induced inflammatory disease characterized by progressive destruction of tooth supporting tissues, which, if left untreated, can result in tooth loss. The destruction of periodontal tissues is primarily caused by an imbalance between the host immune protection and immune destruction mechanisms. The ultimate goal of periodontal therapy is to eliminate inflammation and promote the repair and regeneration of both hard and soft tissues, so as to restore the physiological structure and function of periodontium. Advancement in nanotechnologies has enabled the development of nanomaterials with immunomodulatory properties for regenerative dentistry. This review discusses the immune mechanisms of the major effector cells in the innate and adaptive immune systems, the physicochemical and biological properties of nanomaterials, and the research advancements in immunomodulatory nanotherapeutic approaches for the management of periodontitis and the regeneration of periodontal tissues. The current challenges, and prospects for future applications of nanomaterials are then discussed so that researchers at the intersections of osteoimmunology, regenerative dentistry and materiobiology will continue to advance the development of nanomaterials for improved periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tian Xu
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Kunke Xie
- Clinical Laboratory, Bo'Ai Hospital of Zhongshan, 6 Chenggui Road, East District, Zhongshan 528403, Guangdong, China
| | - Cong Wang
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| |
Collapse
|
16
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
17
|
Liu C, Wu K, Li J, Mu X, Gao H, Xu X. Nanoparticle-mediated therapeutic management in cholangiocarcinoma drug targeting: Current progress and future prospects. Biomed Pharmacother 2023; 158:114135. [PMID: 36535198 DOI: 10.1016/j.biopha.2022.114135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with cholangiocarcinoma (CCA) often have an unfavorable prognosis because of its insidious nature, low resectability rate, and poor response to anticancer drugs and radiotherapy, which makes early detection and treatment difficult. At present, CCA has a five-year overall survival rate (OS) of only 5%, despite advances in therapies. New an increasing number of evidence suggests that nanoplatforms may play a crucial role in enhancing the pharmacological effects and in reducing both short- and long-term side effects of cancer treatment. This document reviews the advantages and shortcomings of nanoparticles such as liposomes, polymeric nanoparticle,inorganic nanoparticle, nano-metals and nano-alloys, carbon dots, nano-micelles, dendrimer, nano-capsule, bio-Nanomaterials in the diagnosis and treatment of CCA and discuss the current challenges in of nanoplatforms for CCA.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xupeng Mu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Chokkattu JJ, Neeharika S, Rameshkrishnan M. Applications of Nanomaterials in Dentistry: A Review. J Int Soc Prev Community Dent 2023; 13:32-41. [PMID: 37153931 PMCID: PMC10155882 DOI: 10.4103/jispcd.jispcd_175_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 05/10/2023] Open
Abstract
Aim and Objective Currently, the major priority in the field of nanotechnology or nanoscience is research and development at the atomic- or molecular-level sciences. Almost every aspects of human health, including pharmaceutical, clinical research and analysis, and supplemental immunological systems, are significantly impacted by it. Diverse dental applications to the realm of nanotechnology, which also reflect developments in material sciences, have given rise to the field of nanodentistry and nanocatalytic drug development, especially in oral nanozyme research and application. This review is aimed to provide readers an in-depth analysis of nanotechnology's characteristics, varied qualities, and applications toward dentistry. Materials and Methods A query was carried out in PubMed and Google Scholar databases for the articles published from 2007 to 2022 using the keywords/MESH term nanomaterials, dentistry, nanoenzymes, metals, and antibacterial activity. Data extraction and evidence synthesis have been performed by three researchers individually. Results A total of 901 articles have been extracted, out of which 108 have been removed due to repetitions and overlapping. After further screening following exclusion and inclusion criteria, 74 papers were considered to be pertinent and that primarily addressed dental nanotechnology were chosen. Further, the data havebeen extracted and interpreted for the review. The results of the review indicated that the development of multifunctional nanozymes has been continuously assessed in relation to oro-dental illnesses to show the significant impact that nanozymes have on oral health. Conclusion As evidenced by the obtained results, with the advent of ongoing breakthroughs in nanotechnology, dental care could be improved with advanced preventive measures.
Collapse
Affiliation(s)
- Jerry Joe Chokkattu
- Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
- Address for correspondence: Dr. Jerry Joe Chokkattu, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India. ,
| | - Singamsetty Neeharika
- Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mahesh Rameshkrishnan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway. Odontology 2022:10.1007/s10266-022-00774-w. [DOI: 10.1007/s10266-022-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
|
20
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
21
|
Bai B, Hao J, Hou M, Wang T, Wu X, Liu Y, Wang Y, Dai C, Hua Y, Ji G, Zhou G. Repair of Large-Scale Rib Defects Based on Steel-Reinforced Concrete-Designed Biomimetic 3D-Printed Scaffolds with Bone-Mineralized Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42388-42401. [PMID: 36094886 DOI: 10.1021/acsami.2c08422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.
Collapse
Affiliation(s)
- Baoshuai Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Yiyang Wang
- National Tissue Engineering Center of China, Shanghai 200001, China
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Incorporated, No. 85 Faladi Road, Building 3, Pudong New Area, Shanghai 201210, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Guangyu Ji
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
22
|
Sawah D, Sahloul M, Ciftci F. Nano-material utilization in stem cells for regenerative medicine. BIOMED ENG-BIOMED TE 2022; 67:429-442. [DOI: 10.1515/bmt-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The utilization of nanotechnology in regenerative medicine has been globally proven to be the main solution to many issues faced with tissue engineering today, and the theoretical and empirical investigations of the association of nanomaterials with stem cells have made significant progress as well. For their ability to self-renew and differentiate into a variety of cell types, stem cells have become popular candidates for cell treatment in recent years, particularly in cartilage and Ocular regeneration. However, there are still several challenges to overcome before it may be used in a wide range of therapeutic contexts. This review paper provides a review of the various implications of nanomaterials in tissue and cell regeneration, the stem cell and scaffold application in novel treatments, and the basic developments in stem cell-based therapies, as well as the hurdles that must be solved for nanotechnology to be used in its full potential. Due to the increased interest in the continuously developing field of nanotechnology, demonstrating, and pinpointing the most recognized and used applications of nanotechnology in regenerative medicine became imperative to provide students, researchers, etc. who are interested.
Collapse
Affiliation(s)
- Darin Sawah
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| | - Maha Sahloul
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| | - Fatih Ciftci
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| |
Collapse
|
23
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
24
|
Shakoor S, Kibble E, El-Jawhari JJ. Bioengineering Approaches for Delivering Growth Factors: A Focus on Bone and Cartilage Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050223. [PMID: 35621501 PMCID: PMC9137461 DOI: 10.3390/bioengineering9050223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Growth factors are bio-factors that target reparatory cells during bone regeneration. These growth factors are needed in complicated conditions of bone and joint damage to enhance tissue repair. The delivery of these growth factors is key to ensuring the effectiveness of regenerative therapy. This review discusses the roles of various growth factors in bone and cartilage regeneration. The methods of delivery of natural or recombinant growth factors are reviewed. Different types of scaffolds, encapsulation, Layer-by-layer assembly, and hydrogels are tools for growth factor delivery. Considering the advantages and limitations of these methods is essential to developing regenerative therapies. Further research can accordingly be planned to have new or combined technologies serving this purpose.
Collapse
|
25
|
Nanomaterials in Dentistry: Current Applications and Future Scope. NANOMATERIALS 2022; 12:nano12101676. [PMID: 35630898 PMCID: PMC9144694 DOI: 10.3390/nano12101676] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but with time, biological scientists recognized its vast benefits and explored the advantages in their respective fields. This extension of nanotechnology in the field of dentistry is termed ‘Nanodentistry.’ It is revolutionizing every aspect of dentistry. It consists of therapeutic and diagnostic tools and supportive aids to maintain oral hygiene with the help of nanomaterials. Research in nanodentistry is evolving holistically but slowly with the advanced finding of symbiotic use of novel polymers, natural polymers, metals, minerals, and drugs. These materials, in association with nanotechnology, further assist in exploring the usage of nano dental adducts in prosthodontic, regeneration, orthodontic, etc. Moreover, drug release cargo abilities of the nano dental adduct provide an extra edge to dentistry over their conventional counterparts. Nano dentistry has expanded to every single branch of dentistry. In the present review, we will present a holistic view of the recent advances in the field of nanodentistry. The later part of the review compiled the ethical and regulatory challenges in the commercialization of the nanodentistry. This review tracks the advancement in nano dentistry in different but important domains of dentistry.
Collapse
|
26
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
27
|
REDDY HB, CRENA.M J, PSG P, SUBRAMANİAN S, APPUKUTTAN D. AN EXPLORATORY REVIEW OF CURRENT TRENDS IN NANODENTISTRY. CUMHURIYET DENTAL JOURNAL 2022. [DOI: 10.7126/cumudj.974945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|
29
|
Atkinson I, Seciu-Grama AM, Mocioiu OC, Mocioiu AM, Predoana L, Voicescu M, Cusu JP, Grigorescu RM, Ion RM, Craciunescu O. Preparation and Biocompatibility of Poly Methyl Methacrylate (PMMA)-Mesoporous Bioactive Glass (MBG) Composite Scaffolds. Gels 2021; 7:180. [PMID: 34842650 PMCID: PMC8628795 DOI: 10.3390/gels7040180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, the rising number of bone diseases which affect millions of people worldwide has led to an increased demand for materials with restoring and augmentation properties that can be used in therapies for bone pathologies. In this work, PMMA- MBG composite scaffolds containing ceria (0, 1, 3 mol%) were obtained by the phase separation method. The obtained composite scaffolds were characterized by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. UV-Vis measurement and EDX analysis confirmed the presence of cerium ions in the composite scaffolds. Evaluation of the in-vitro biocompatibility using MTT assay showed that composite scaffold containing 1 mol% of ceria presented higher viability than control cells (100%) for concentrations ranging between 5 and 50% after 96 h of incubation.
Collapse
Affiliation(s)
- Irina Atkinson
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202, Spl. Independentei, 060021 Bucharest, Romania; (O.C.M.); (L.P.); (M.V.); (J.P.C.)
| | - Ana Maria Seciu-Grama
- National Institute of Research and Development for Biological Sciences, 296, Spl. Independentei, 060031 Bucharest, Romania;
| | - Oana Catalina Mocioiu
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202, Spl. Independentei, 060021 Bucharest, Romania; (O.C.M.); (L.P.); (M.V.); (J.P.C.)
| | - Ana Maria Mocioiu
- National R&D Institute for Non-ferrous and Rare Metals, 102, Biruintei Blvd, 077145 Pantelimon, Ilfov, Romania;
| | - Luminita Predoana
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202, Spl. Independentei, 060021 Bucharest, Romania; (O.C.M.); (L.P.); (M.V.); (J.P.C.)
| | - Mariana Voicescu
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202, Spl. Independentei, 060021 Bucharest, Romania; (O.C.M.); (L.P.); (M.V.); (J.P.C.)
| | - Jeanina Pandele Cusu
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202, Spl. Independentei, 060021 Bucharest, Romania; (O.C.M.); (L.P.); (M.V.); (J.P.C.)
| | - Ramona Marina Grigorescu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202, Spl. Independentei, 060021 Bucharest, Romania; (R.M.G.); (R.M.I.)
| | - Rodica Mariana Ion
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202, Spl. Independentei, 060021 Bucharest, Romania; (R.M.G.); (R.M.I.)
| | - Oana Craciunescu
- National Institute of Research and Development for Biological Sciences, 296, Spl. Independentei, 060031 Bucharest, Romania;
| |
Collapse
|
30
|
Timing of orthodontic tooth movement in bone defects repaired with synthetic scaffolds: A scoping review of animal studies. Arch Oral Biol 2021; 132:105278. [PMID: 34634537 DOI: 10.1016/j.archoralbio.2021.105278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The optimal timing of orthodontic tooth movement (OTM) could allow earlier tooth movements across alveolar bone defects while minimizing the adverse effects. The objective of this scoping systematic review was therefore designed to review pre-clinical animal studies on the ideal protocol for the timing of orthodontic traction across alveolar defects augmented with synthetic scaffolds. DESIGN Following the PRISMA-ScR guidelines, three electronic databases were searched (Pubmed, Scopus and Web of Science). RESULTS A total of twelve studies were included in the final review that reported on small-animal (rats, guinea pigs, rabbits) and large-animal (dogs and goats) models. Based on the grafting biomaterials, eight papers used cell-free scaffolds, four articles utilised cell-based scaffolds. The timing protocol for the initiation of OTM employed in the studies ranged from immediate to 6 months after surgical grafting. Only four studies included autologous bone graft (gold standard) as positive control. Most papers reported positive results with regards to the rate of OTM and bone augmentation effects while only a few reported side effects such as root resorptions. Overall, the included articles showed a massive heterogeneity in terms of the animal bone defect model characteristics, scaffold materials, study designs, parameters of OTM and methods of analysis. CONCLUSION Since there was inadequate evidence to identify the optimal protocol of OTM, optimization of animal bone defect models and outcome measurements is needed to improve the translational ability of future studies.
Collapse
|
31
|
Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater 2021; 6:3328-3342. [PMID: 33817414 PMCID: PMC7985477 DOI: 10.1016/j.bioactmat.2021.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The periodontium is an integrated, functional unit of multiple tissues surrounding and supporting the tooth, including but not limited to cementum (CM), periodontal ligament (PDL) and alveolar bone (AB). Periodontal tissues can be destructed by chronic periodontal disease, which can lead to tooth loss. In support of the treatment for periodontally diseased tooth, various biomaterials have been applied starting as a contact inhibition membrane in the guided tissue regeneration (GTR) that is the current gold standard in dental clinic. Recently, various biomaterials have been prepared in a form of tissue engineering scaffold to facilitate the regeneration of damaged periodontal tissues. From a physical substrate to support healing of a single type of periodontal tissue to multi-phase/bioactive scaffold system to guide an integrated regeneration of periodontium, technologies for scaffold fabrication have emerged in last years. This review covers the recent advancements in development of scaffolds designed for periodontal tissue regeneration and their efficacy tested in vitro and in vivo. Pros and Cons of different biomaterials and design parameters implemented for periodontal tissue regeneration are also discussed, including future perspectives.
Collapse
Affiliation(s)
| | | | - Solaiman Tarafder
- Center for Dental and Craniofacial Research, Columbia University Medical Center, 630 W. 168 St., VC12-212, New York, NY, 10032, USA
| | - Chang H. Lee
- Center for Dental and Craniofacial Research, Columbia University Medical Center, 630 W. 168 St., VC12-212, New York, NY, 10032, USA
| |
Collapse
|
32
|
Elements of 3D Bioprinting in Periodontal Regeneration: Frontiers and Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide, caused by the accumulation of bacterial plaque, which can lead to the destruction of periodontal supporting tissue and eventually tooth loss. The goal of periodontal treatment is to remove pathogenic factors and control the periodontal inflammation. However, the complete regeneration of periodontal supporting tissue is still a major challenge according to current technology. Tissue engineering recovers the injured tissue through seed cells, bio-capable scaffold and bioactive factors. Three-D-bioprinting is an emerging technology in regeneration medicine/tissue engineering, because of its high accuracy and high efficiency, providing a new strategy for periodontal regeneration. This article represents the materials of 3D bioprinting in periodontal regeneration from three aspects: oral seed cell, bio-scaffold and bio-active factors.
Collapse
|
33
|
Sosnowska M, Kutwin M, Strojny B, Wierzbicki M, Cysewski D, Szczepaniak J, Ficek M, Koczoń P, Jaworski S, Chwalibog A, Sawosz E. Diamond Nanofilm Normalizes Proliferation and Metabolism in Liver Cancer Cells. Nanotechnol Sci Appl 2021; 14:115-137. [PMID: 34511890 PMCID: PMC8420805 DOI: 10.2147/nsa.s322766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation. Methods HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used. An aqueous colloid of diamond nanoparticles, which covered the cell culture plate, was used to create the nanofilm. The roughness of the resulting nanofilm was measured by atomic force microscopy. Mitochondrial activity and cell proliferation were measured by XTT and BrdU assays. Cell morphology and a scratch test were used to evaluate the invasiveness of cells. Flow cytometry determined the number of cells within the cell cycle. Protein expression in was measured by mass spectrometry. Results The nfND created a surface with increased roughness and exposed oxygen groups compared with a standard plate. All cell lines were prone to settling on the nanofilm, but cancer cells formed more relaxed clusters. The surface compatibility was dependent on the cell type and decreased in the order C3A >HepG2 >HS-5. The invasion was reduced in cancer lines with the greatest effect on the C3A line, reducing proliferation and increasing the G2/M cell population. Among the proteins with altered expression, membrane and nuclear proteins dominated. Conclusion In vitro studies demonstrated the antiproliferative properties of nfND against C3A liver cancer cells. At the same time, the need to personalize potential therapy was indicated due to the differential protein synthetic responses in C3A vs HepG2 cells. We documented that nfND is a source of signals capable of normalizing the expression of many intracellular proteins involved in the transformation to non-cancerous cells.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dominik Cysewski
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Ficek
- Department of Metrology and Optoelectronics, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal, Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Multi-Layer Technique (MLT) with Porcine Collagenated Cortical Bone Lamina for Bone Regeneration Procedures and Immediate Post-Extraction Implantation in the Esthetic Area: A Retrospective Case Series with a Mean Follow-Up of 5 Years. MATERIALS 2021; 14:ma14185180. [PMID: 34576416 PMCID: PMC8469553 DOI: 10.3390/ma14185180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023]
Abstract
Background: Augmentation of the edentulous atrophic anterior region is a challenging situation. The purpose of this article was to evaluate the effectiveness of a collagenated cortical bone lamina of porcine origin for horizontal ridge augmentation in patients with inadequate alveolar ridge width undergoing immediate post-extraction implantation in the anterior sites, and to report on implant survival rates/complications. Materials and methods: The cases were extracted electronically from a large database according to these specific inclusion criteria: patients with inadequate alveolar ridge width in the anterior maxilla or mandible, who underwent immediate post-extraction implant placement and simultaneous alveolar bone reconstruction using xenogeneic cortical bone lamina. An additional layer of palatal connective tissue graft was inserted between lamina and the vestibular mucosa, for improving soft tissue healing. A collagenated bone substitute was additionally placed in the gap between the lamina and implant surface in all patients. The main outcomes were implant survival and complications. Results: Forty-nine patients with 65 implants were included. Patients’ mean age at the time of implant surgery was 60.0 ± 13.6 years. The mean follow-up was 60.5 ± 26.6 months after implant placement. The implant survival was 100%. Four postoperative complications occurred in four patients. No specific factor was found to be associated with complication occurrence. Conclusion: The use of collagenated cortical bone lamina can be considered as a successful option for alveolar reconstruction in immediate post-extraction implant insertion procedures in anterior regions with inadequate alveolar ridge width.
Collapse
|
35
|
Abstract
Bone injuries and fractures are often associated with post-surgical failures, extended healing times, infection, a lack of return to a normal active lifestyle, and corrosion associated allergies. In this regard, this review presents a comprehensive report on advances in nanotechnology driven solutions for bone tissue engineering. The fabrication of metals such as copper, gold, platinum, palladium, silver, strontium, titanium, zinc oxide, and magnetic nanoparticles with tunable physico-chemical and opto-electronic properties for osteogenic scaffolds is discussed here in detail. Furthermore, the rational selection of a polymeric base such as chitosan, collagen, poly (L-lactide), hydroxyl-propyl-methyl cellulose, poly-lactic-co-glycolic acid, polyglucose-sorbitol-carboxymethy ether, polycaprolactone, natural rubber latex, and silk fibroin for scaffold preparation is also discussed. These advanced materials and fabrication strategies not only provide for appropriate mechanical strength but also render integrity, making them appealing for orthopedic applications. Further, such scaffolds can be functionalized with ligands or biomolecules such as hydroxyapatite, polypyrrole (PPy), magnesium, zinc dopants, and growth factors to stimulate osteogenic differentiation, mineralization, and neovascularization to aid in rapid healing. Future directions to co-incorporate bioceramics, biogenic nanoparticles, and fourth generation biomaterials to enhance biocompatibility, mechanical properties, and rapid recovery are also included in this review. Hence, the further development of such biomimetic metal-based nano-scaffolds at a lower cost with reduced risks and greater efficacy at regrowing bone can revolutionize the future of orthopedics.
Collapse
|
36
|
Re F, Sartore L, Borsani E, Ferroni M, Baratto C, Mahajneh A, Smith A, Dey K, Almici C, Guizzi P, Bernardi S, Faglia G, Magni F, Russo D. Mineralization of 3D Osteogenic Model Based on Gelatin-Dextran Hybrid Hydrogel Scaffold Bioengineered with Mesenchymal Stromal Cells: A Multiparametric Evaluation. MATERIALS 2021; 14:ma14143852. [PMID: 34300769 PMCID: PMC8306641 DOI: 10.3390/ma14143852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Gelatin–dextran hydrogel scaffolds (G-PEG-Dx) were evaluated for their ability to activate the bone marrow human mesenchymal stromal cells (BM-hMSCs) towards mineralization. G-PEG-Dx1 and G-PEG-Dx2, with identical composition but different architecture, were seeded with BM-hMSCs in presence of fetal bovine serum or human platelet lysate (hPL) with or without osteogenic medium. G-PEG-Dx1, characterized by a lower degree of crosslinking and larger pores, was able to induce a better cell colonization than G-PEG-Dx2. At day 28, G-PEG-Dx2, with hPL and osteogenic factors, was more efficient than G-PEG-Dx1 in inducing mineralization. Scanning electron microscopy (SEM) and Raman spectroscopy showed that extracellular matrix produced by BM-hMSCs and calcium-positive mineralization were present along the backbone of the G-PEG-Dx2, even though it was colonized to a lesser degree by hMSCs than G-PEG-Dx1. These findings were confirmed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), detecting distinct lipidomic signatures that were associated with the different degree of scaffold mineralization. Our data show that the architecture and morphology of G-PEG-Dx2 is determinant and better than that of G-PEG-Dx1 in promoting a faster mineralization, suggesting a more favorable and active role for improving bone repair.
Collapse
Affiliation(s)
- Federica Re
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (L.S.); (K.D.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy;
- CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Allia Mahajneh
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (L.S.); (K.D.)
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Camillo Almici
- Laboratory for Stem Cell Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Pierangelo Guizzi
- Orthopedics and Traumatology Unit, ASST Spedali Civili, Via Papa Giovanni XXIII 4, 25063 Gardone Val Trompia, 25123 Brescia, Italy;
| | - Simona Bernardi
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Guido Faglia
- PRISM Lab, CNR-INO, 25123 Brescia, Italy; (C.B.); (G.F.)
- Department of Information Engineering (DII), University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Domenico Russo
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Correspondence:
| |
Collapse
|
37
|
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021; 26:3007. [PMID: 34070157 PMCID: PMC8158510 DOI: 10.3390/molecules26103007] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
After tooth loss, bone resorption is irreversible, leaving the area without adequate bone volume for successful implant treatment. Bone grafting is the only solution to reverse dental bone loss and is a well-accepted procedure required in one in every four dental implants. Research and development in materials, design and fabrication technologies have expanded over the years to achieve successful and long-lasting dental implants for tooth substitution. This review will critically present the various dental bone graft and substitute materials that have been used to achieve a successful dental implant. The article also reviews the properties of dental bone grafts and various dental bone substitutes that have been studied or are currently available commercially. The various classifications of bone grafts and substitutes, including natural and synthetic materials, are critically presented, and available commercial products in each category are discussed. Different bone substitute materials, including metals, ceramics, polymers, or their combinations, and their chemical, physical, and biocompatibility properties are explored. Limitations of the available materials are presented, and areas which require further research and development are highlighted. Tissue engineering hybrid constructions with enhanced bone regeneration ability, such as cell-based or growth factor-based bone substitutes, are discussed as an emerging area of development.
Collapse
Affiliation(s)
- Rusin Zhao
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Ruijia Yang
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Paul R. Cooper
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium;
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| |
Collapse
|
38
|
d’Avanzo N, Bruno MC, Giudice A, Mancuso A, Gaetano FD, Cristiano MC, Paolino D, Fresta M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021; 26:1643. [PMID: 33804244 PMCID: PMC7999474 DOI: 10.3390/molecules26061643] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.
Collapse
Affiliation(s)
- Nicola d’Avanzo
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, I-66100 Chieti, Italy
| | - Maria Chiara Bruno
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Amerigo Giudice
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Antonia Mancuso
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| |
Collapse
|
39
|
Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preventive and regenerative techniques have been suggested to minimize the aesthetic and functional effects caused by intraoral bone defects, enabling the installation of dental implants. Among them, porous three-dimensional structures (scaffolds) composed mainly of bioabsorbable ceramics, such as hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) stand out for reducing the use of autogenous, homogeneous, and xenogenous bone grafts and their unwanted effects. In order to stimulate bone formation, biodegradable polymers such as cellulose, collagen, glycosaminoglycans, polylactic acid (PLA), polyvinyl alcohol (PVA), poly-ε-caprolactone (PCL), polyglycolic acid (PGA), polyhydroxylbutyrate (PHB), polypropylenofumarate (PPF), polylactic-co-glycolic acid (PLGA), and poly L-co-D, L lactic acid (PLDLA) have also been studied. More recently, hybrid scaffolds can combine the tunable macro/microporosity and osteoinductive properties of ceramic materials with the chemical/physical properties of biodegradable polymers. Various methods are suggested for the manufacture of scaffolds with adequate porosity, such as conventional and additive manufacturing techniques and, more recently, 3D and 4D printing. The purpose of this manuscript is to review features concerning biomaterials, scaffolds macro and microstructure, fabrication techniques, as well as the potential interaction of the scaffolds with the human body.
Collapse
|
40
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
da Silva Brum I, Frigo L, Lana Devita R, da Silva Pires JL, Hugo Vieira de Oliveira V, Rosa Nascimento AL, de Carvalho JJ. Histomorphometric, Immunohistochemical, Ultrastructural Characterization of a Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite and a Bone Xenograft in Sub-Critical Size Bone Defect in Rat Calvaria. MATERIALS 2020; 13:ma13204598. [PMID: 33076561 PMCID: PMC7602735 DOI: 10.3390/ma13204598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Nowadays, we can observe a worldwide trend towards the development of synthetic biomaterials. Several studies have been conducted to better understand the cellular mechanisms involved in the processes of inflammation and bone healing related to living tissues. The aim of this study was to evaluate tissue behaviors of two different types of biomaterials: synthetic nano-hydroxyapatite/beta-tricalcium phosphate composite and bone xenograft in sub-critical bone defects in rat calvaria. Twenty-four rats underwent experimental surgery in which two 3 mm defects in each cavity were tested. Rats were divided into two groups: Group 1 used xenogen hydroxyapatite (Bio Oss™); Group 2 used synthetic nano-hydroxyapatite/beta-tricalcium phosphate (Blue Bone™). Sixty days after surgery, calvaria bone defects were filled with biomaterial, animals were euthanized, and tissues were stained with Masson’s trichrome and periodic acid–Schiff (PAS) techniques, immune-labeled with anti-TNF-α and anti-MMP-9, and electron microscopy analyses were also performed. Histomorphometric analysis indicated a greater presence of protein matrix in Group 2, in addition to higher levels of TNF-α and MMP-9. Ultrastructural analysis showed that biomaterial fibroblasts were associated with the tissue regeneration stage. Paired statistical data indicated that Blue Bone™ can improve bone formation/remodeling when compared to biomaterials of xenogenous origin.
Collapse
Affiliation(s)
- Igor da Silva Brum
- Implantology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
- Correspondence: ; Tel.: +55-21-988-244-976
| | - Lucio Frigo
- Periodontology Department, Universidade Guarulhos, Guarulhos 07023-070, São Paulo, Brazil;
| | - Renan Lana Devita
- Orthodontics Department, State University Barcelona, 08193 Barcelona, Spain;
| | | | - Victor Hugo Vieira de Oliveira
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Ana Lucia Rosa Nascimento
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Jorge José de Carvalho
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| |
Collapse
|
42
|
Serrano-Bello J, Cruz-Maya I, Suaste-Olmos F, González-Alva P, Altobelli R, Ambrosio L, Medina LA, Guarino V, Alvarez-Perez MA. In vivo Regeneration of Mineralized Bone Tissue in Anisotropic Biomimetic Sponges. Front Bioeng Biotechnol 2020; 8:587. [PMID: 32775319 PMCID: PMC7381345 DOI: 10.3389/fbioe.2020.00587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
In the last two decades, alginate scaffolds have been variously studied as extracellular matrix analogs for tissue engineering. However, relevant evidence is still lacking concerning their ability to mimic the microenvironment of hierarchical tissues such as bone. Hence, an increasing amount of attention has recently been devoted to the fabrication of macro/microporous sponges with pore anisotropy able to more accurately replicate the cell niche structure as a trigger for bioactive functionalities. This paper presents an in vivo study of alginate sponges with anisotropic microporous domains (MAS) formed by ionic crosslinking in the presence of different fractions (30 or 50% v) of hydroxyapatite (HA). In comparison with unloaded sponges (MAS0), we demonstrated that HA confers peculiar physical and biological properties to the sponge, depending upon the inorganic fraction used, enabling the sponge to bio-mimetically support the regeneration of newly formed bone. Scanning electron microscopy analysis showed a preferential orientation of pores, ascribable to the physical constraints exerted by HA particles during the pore network formation. Energy dispersive spectroscopy (EDS) and X-Ray diffraction (XRD) confirmed a chemical affinity of HA with the native mineral phase of the bone. In vitro studies via WST-1 assay showed good adhesion and proliferation of human Dental Pulp-Mesenchymal Stem Cells (hDP-MSC) that increased in the presence of the bioactive HA signals. Moreover, in vivo studies via micro-CT and histological analyses of a bone model (e.g., a rat calvaria defect) confirmed that the maximum osteogenic response after 90 days was achieved with MAS30, which supported good regeneration of the calvaria defect without any evidence of inflammatory reaction. Hence, all of the results suggested that MAS is a promising scaffold for supporting the regeneration of hard tissues in different body compartments.
Collapse
Affiliation(s)
- Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Iriczalli Cruz-Maya
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico.,Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Fernando Suaste-Olmos
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rosaria Altobelli
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luis Alberto Medina
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincenzo Guarino
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
43
|
Chitosan-Hydrogel Polymeric Scaffold Acts as an Independent Primary Inducer of Osteogenic Differentiation in Human Mesenchymal Stromal Cells. MATERIALS 2020; 13:ma13163546. [PMID: 32796668 PMCID: PMC7475832 DOI: 10.3390/ma13163546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Regenerative medicine aims to restore damaged tissues and mainly takes advantage of human mesenchymal stromal cells (hMSCs), either alone or combined with three-dimensional scaffolds. The scaffold is generally considered a support, and its contribution to hMSC proliferation and differentiation is unknown or poorly investigated. The aim of this study was to evaluate the capability of an innovative three-dimensional gelatin–chitosan hybrid hydrogel scaffold (HC) to activate the osteogenic differentiation process in hMSCs. We seeded hMSCs from adipose tissue (AT-hMSCs) and bone marrow (BM-hMSCs) in highly performing HC of varying chitosan content in the presence of growing medium (GM) or osteogenic medium (OM) combined with Fetal Bovine Serum (FBS) or human platelet lysate (hPL). We primarily evaluated the viability and the proliferation of AT-hMSCs and BM-hMSCs under different conditions. Then, in order to analyse the activation of osteogenic differentiation, the osteopontin (OPN) transcript was absolutely quantified at day 21 by digital PCR. OPN was expressed under all conditions, in both BM-hMSCs and AT-hMSCs. Cells seeded in HC cultured with OM+hPL presented the highest OPN transcript levels, as expected. Interestingly, both BM-hMSCs and AT-hMSCs cultured with GM+FBS expressed OPN. In particular, BM-hMSCs cultured with GM+FBS expressed more OPN than those cultured with GM+hPL and OM+FBS; AT-hMSCs cultured with GM+FBS presented a lower expression of OPN when compared with those cultured with GM+hPL, but no significant difference was detected when compared with AT-hMSCs cultured with OM+FBS. No OPN expression was detected in negative controls. These results show the capability of HC to primarily and independently activate osteogenic differentiation pathways in hMCSs. Therefore, these scaffolds may be considered no more as a simple support, rather than active players in the differentiative and regenerative process.
Collapse
|
44
|
Al-Bari MAA, Hossain S, Mia U, Al Mamun MA. Therapeutic and Mechanistic Approaches of Tridax Procumbens Flavonoids for the Treatment of Osteoporosis. Curr Drug Targets 2020; 21:1687-1702. [PMID: 32682372 DOI: 10.2174/1389450121666200719012116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
Homeostasis of bone is closely regulated by the balanced activities between the bone resorbing activity of osteoclast cells and bone-forming ability of osteoblast cells. Multinucleated osteoclasts degrade bone matrix and involve in the dynamic bone remodelling in coordination with osteoblasts. Disruption of this regulatory balance between these cells or any imbalance in bone remodelling caused by a higher rate of resorption over construction of bone results in a decrease of bone matrix including bone mineral density (BMD). These osteoclast-dominant effects result in a higher risk of bone crack and joint demolition in several bone-related diseases, including osteoporosis and rheumatoid arthritis (RA). Tridax procumbens is a very interesting perennial plant and its secondary metabolites called here T. procumbens flavonoids (TPFs) are well-known phytochemical agents owing to various therapeutic practices such as anti-inflammatory, anti-anaemic and anti-diabetic actions. This review designed to focus the systematic convention concerning the medicinal property and mechanism of actions of TPFs for the management of bone-related diseases. Based on the current literature, the review offers evidence-based information of TPFs for basic researchers and clinicians for the prevention and treatment of bone related diseases, including osteoporosis. It also emphasizes the medical significance for more research to comprehend the cellular signalling pathways of TPFs for the regulation of bone remodelling and discusses the possible promising ethnobotanical resource that can convey the preclinical and clinical clues to develop the next generation therapeutic agents for the treatment of bonerelated disorders.
Collapse
Affiliation(s)
| | - Showna Hossain
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Ujjal Mia
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Abdullah Al Mamun
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| |
Collapse
|
45
|
Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected Nanomaterials' Application Enhanced with the Use of Stem Cells in Acceleration of Alveolar Bone Regeneration during Augmentation Process. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1216. [PMID: 32580409 PMCID: PMC7353104 DOI: 10.3390/nano10061216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023]
Abstract
Regenerative properties are different in every human tissue. Nowadays, with the increasing popularity of dental implants, bone regenerative procedures called augmentations are sometimes crucial in order to perform a successful dental procedure. Tissue engineering allows for controlled growth of alveolar and periodontal tissues, with use of scaffolds, cells, and signalling molecules. By modulating the patient's tissues, it can positively influence poor integration and healing, resulting in repeated implant surgeries. Application of nanomaterials and stem cells in tissue regeneration is a newly developing field, with great potential for maxillofacial bony defects. Nanostructured scaffolds provide a closer structural support with natural bone, while stem cells allow bony tissue regeneration in places when a certain volume of bone is crucial to perform a successful implantation. Several types of selected nanomaterials and stem cells were discussed in this study. Their use has a high impact on the efficacy of the current and future procedures, which are still challenging for medicine. There are many factors that can influence the regenerative process, while its general complexity makes the whole process even harder to control. The aim of this study was to evaluate the effectiveness and advantage of both stem cells and nanomaterials in order to better understand their function in regeneration of bone tissue in oral cavity.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maciej Dobrzynski
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
46
|
Neutralized Dicalcium Phosphate and Hydroxyapatite Biphasic Bioceramics Promote Bone Regeneration in Critical Peri-Implant Bone Defects. MATERIALS 2020; 13:ma13040823. [PMID: 32054126 PMCID: PMC7079663 DOI: 10.3390/ma13040823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the efficacy of bone regeneration in developed bioceramics composed of dicalcium phosphate and hydroxyapatite (DCP/HA). Critical bony defects were prepared in mandibles of beagles. Defects were grafted using DCP/HA or collagen-enhanced particulate biphasic calcium phosphate (TCP/HA/Col), in addition to a control group without grafting. To assess the efficacy of new bone formation, implant stability quotient (ISQ) values, serial bone labeling, and radiographic and histological percentage of marginal bone coverage (PMBC) were carefully evaluated four, eight, and 12 weeks after surgery. Statistically significant differences among the groups were observed in the histological PMBC after four weeks. The DCP/HA group consistently exhibited significantly higher ISQ values and radiographic and histological PMCB eight and 12 weeks after surgery. At 12 weeks, the histological PMBC of DCP/HA (72.25% ± 2.99%) was higher than that in the TCP/HA/Col (62.61% ± 1.52%) and control groups (30.64% ± 2.57%). After rigorously evaluating the healing of biphasic DCP/HA bioceramics with a critical size peri-implant model with serial bone labeling, we confirmed that neutralized bioceramics exhibiting optimal compression strength and biphasic properties show promising efficacy in fast bone formation and high marginal bone coverage in peri-implant bone defects.
Collapse
|