1
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Wang H, Li H, Lee CK, Mat Nanyan NS, Tay GS. Recent Advances in the Enzymatic Synthesis of Polyester. Polymers (Basel) 2022; 14:5059. [PMID: 36501454 PMCID: PMC9740404 DOI: 10.3390/polym14235059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Polyester is a kind of polymer composed of ester bond-linked polybasic acids and polyol. This type of polymer has a wide range of applications in various industries, such as automotive, furniture, coatings, packaging, and biomedical. The traditional process of synthesizing polyester mainly uses metal catalyst polymerization under high-temperature. This condition may have problems with metal residue and undesired side reactions. As an alternative, enzyme-catalyzed polymerization is evolving rapidly due to the metal-free residue, satisfactory biocompatibility, and mild reaction conditions. This article presented the reaction modes of enzyme-catalyzed ring-opening polymerization and enzyme-catalyzed polycondensation and their combinations, respectively. In addition, the article also summarized how lipase-catalyzed the polymerization of polyester, which includes (i) the distinctive features of lipase, (ii) the lipase-catalyzed polymerization and its mechanism, and (iii) the lipase stability under organic solvent and high-temperature conditions. In addition, this article also focused on the advantages and disadvantages of enzyme-catalyzed polyester synthesis under different solvent systems, including organic solvent systems, solvent-free systems, and green solvent systems. The challenges of enzyme optimization and process equipment innovation for further industrialization of enzyme-catalyzed polyester synthesis were also discussed in this article.
Collapse
Affiliation(s)
- Hong Wang
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Hongpeng Li
- Tangshan Jinlihai Biodiesel Co. Ltd., Tangshan 063000, China
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Noreen Suliani Mat Nanyan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| |
Collapse
|
3
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
4
|
Todea A, Fortuna S, Ebert C, Asaro F, Tomada S, Cespugli M, Hollan F, Gardossi L. Rational Guidelines for the Two-Step Scalability of Enzymatic Polycondensation: Experimental and Computational Optimization of the Enzymatic Synthesis of Poly(glycerolazelate). CHEMSUSCHEM 2022; 15:e202102657. [PMID: 35199480 PMCID: PMC9320960 DOI: 10.1002/cssc.202102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The lipase-catalyzed polycondensation of azelaic acid and glycerol is investigated according to a Design-of-Experiment approach that helps to elucidate the effect of experimental variables on monomer conversion, Mn and regioselectivity of acylation of glycerol. Chemometric analysis shows that after 24 h the reaction proceeds regardless of the presence of the enzyme. Accordingly, the biocatalyst was removed after a first step of synthesis and the chain elongation continued at 80 °C. That allowed the removal of the biocatalyst and the preservation of its activity: pre-requites for efficient applicability at industrial scale. The experimental study, combined with docking-based computational analysis, provides rational guidelines for the optimization of the regioselective acylation of glycerol. The process is scaled up to 73.5 g of monomer. The novelty of the present study is the rigorous control of the reaction conditions and of the integrity of the immobilized biocatalyst, which serve to avoiding any interference of free enzyme or fines released in the reaction mixture. The quantitative analysis of the effect of experimental conditions and the overcoming of some major technical bottlenecks for the scalability of enzymatic polycondensation opens new scenarios for industrial exploitation.
Collapse
Affiliation(s)
- Anamaria Todea
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
- Current address: CONCEPT Lab, Istituto Italiano di Tecnologia (IIT)I-16152GenovaItaly
| | - Cynthia Ebert
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Stefano Tomada
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Marco Cespugli
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Fabio Hollan
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Lucia Gardossi
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| |
Collapse
|
5
|
Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Todea A, Deganutti C, Spennato M, Asaro F, Zingone G, Milizia T, Gardossi L. Azelaic Acid: A Bio-Based Building Block for Biodegradable Polymers. Polymers (Basel) 2021; 13:4091. [PMID: 34883592 PMCID: PMC8659112 DOI: 10.3390/polym13234091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Azelaic acid is a dicarboxylic acid containing nine C atoms, industrially obtained from oleic acid. Besides its important properties and pharmacological applications, as an individual compound, azelaic acid has proved to be a valuable bio-based monomer for the synthesis of biodegradable and sustainable polymers, plasticizers and lubricants. This review discusses the studies and the state of the art in the field of the production of azelaic acid from oleic acid, the chemical and enzymatic synthesis of bio-based oligo and polyester and their properties, including biodegradability and biocompostability.
Collapse
Affiliation(s)
- Anamaria Todea
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Caterina Deganutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Mariachiara Spennato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Guglielmo Zingone
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | | | - Lucia Gardossi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| |
Collapse
|
7
|
Bazin A, Avérous L, Pollet E. Ferulic Acid as Building Block for the Lipase-Catalyzed Synthesis of Biobased Aromatic Polyesters. Polymers (Basel) 2021; 13:polym13213693. [PMID: 34771251 PMCID: PMC8588094 DOI: 10.3390/polym13213693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
Enzymatic synthesis of aromatic biobased polyesters is a recent and rapidly expanding research field. However, the direct lipase-catalyzed synthesis of polyesters from ferulic acid has not yet been reported. In this work, various ferulic-based monomers were considered for their capability to undergo CALB-catalyzed polymerization. After conversion into diesters of different lengths, the CALB-catalyzed polymerization of these monomers with 1,4-butanediol resulted in short oligomers with a DPn up to 5. Hydrogenation of the double bond resulted in monomers allowing obtaining polyesters of higher molar masses with DPn up to 58 and Mw up to 33,100 g·mol−1. These polyesters presented good thermal resistance up to 350 °C and Tg up to 7 °C. Reduction of the ferulic-based diesters into diols allowed preserving the double bond and synthesizing polyesters with a DPn up to 19 and Mw up to 15,500 g·mol−1 and higher Tg (up to 21 °C). Thus, this study has shown that the monomer hydrogenation strategy proved to be the most promising route to achieve ferulic-based polyester chains of high DPn. This study also demonstrates for the first time that ferulic-based diols allow the synthesis of high Tg polyesters. Therefore, this is an important first step toward the synthesis of competitive biobased aromatic polyesters by enzymatic catalysis.
Collapse
|
8
|
Bazin A, Avérous L, Pollet E. Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Criteria for Engineering Cutinases: Bioinformatics Analysis of Catalophores. Catalysts 2021. [DOI: 10.3390/catal11070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutinases are bacterial and fungal enzymes that catalyze the hydrolysis of natural cutin, a three-dimensional inter-esterified polyester with epoxy-hydroxy fatty acids with chain lengths between 16 and 18 carbon atoms. Due to their ability to accept long chain substrates, cutinases are also effective in catalyzing in vitro both the degradation and synthesis of several synthetic polyesters and polyamides. Here, we present a bioinformatics study that intends to correlate the structural features of cutinases with their catalytic properties to provide rational basis for their effective exploitation, particularly in polymer synthesis and biodegradation. The bioinformatics study used the BioGPS method (Global Positioning System in Biological Space) that computed molecular descriptors based on Molecular Interaction Fields (MIFs) described in the GRID force field. The information was used to generate catalophores, spatial representations of the ability of each enzymatic active site to establish hydrophobic and electrostatic interactions. These tools were exploited for comparing cutinases to other serine-hydrolases enzymes, namely lipases, esterases, amidases and proteases, and for highlighting differences and similarities that might guide rational engineering strategies. Structural features of cutinases with their catalytic properties were correlated. The “catalophore” of cutinases indicate shared features with lipases and esterases.
Collapse
|
10
|
Gkountela C, Rigopoulou M, Barampouti EM, Vouyiouka S. Enzymatic prepolymerization combined with bulk post-polymerization towards the production of bio-based polyesters: The case of poly(butylene succinate). Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Pellis A, Malinconico M, Guarneri A, Gardossi L. Renewable polymers and plastics: Performance beyond the green. N Biotechnol 2020; 60:146-158. [PMID: 33068793 DOI: 10.1016/j.nbt.2020.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Renewable bio-based polymers are one of the effective answers that the bioeconomy offers to solve the environmental emergency connected to plastics and more specifically fossil-based plastics. Previous studies have shown that more than 70 % of the natural capital cost associated with plastic derives from the extraction and processing of fossil raw materials and that the price of fossil plastic would be on average 44 % higher if such impact was fully paid by businesses. The disclosure of the hidden costs of plastics will contribute to dispelling the myth of the expensiveness of renewable polymers. Nevertheless, the adoption of bio-based plastics in the market must be motivated by their functional properties and not merely by their green credentials. This article highlights some successful examples of synergies between chemistry and biotechnology in achieving a new generation of bio-based monomers and polymers. Their success is justified by the combination of scientific advances with positive environmental and social fallouts.
Collapse
Affiliation(s)
- Alessandro Pellis
- University of Natural Resources and Life Sciences Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucia Gardossi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|