1
|
Šugár P, Antala R, Šugárová J, Kováčik J, Pata V. Study on Surface Roughness, Morphology, and Wettability of Laser-Modified Powder Metallurgy-Processed Ti-Graphite Composite Intended for Dental Application. Bioengineering (Basel) 2023; 10:1406. [PMID: 38135997 PMCID: PMC10740645 DOI: 10.3390/bioengineering10121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, the surface laser treatment of a new type of dental biomaterial, a Ti-graphite composite, prepared by low-temperature powder metallurgy, was investigated. Different levels of output laser power and the scanning speed of the fiber nanosecond laser with a wavelength of 1064 nm and argon as a shielding gas were used in this experiment. The surface integrity of the machined surfaces was evaluated to identify the potential for the dental implant's early osseointegration process, including surface roughness parameter documentation by contact and non-contact methods, surface morphology assessment by scanning electron microscopy, and surface wettability estimation using the sessile drop technique. The obtained results showed that the surface roughness parameters attributed to high osseointegration relevance (Rsk, Rku, and Rsm) were not significantly influenced by laser power, and on the other hand, the scanning speed seems to have the most prevalent effect on surface roughness when exhibiting statistical differences in all evaluated profile roughness parameters except Rvk. The obtained laser-modified surfaces were hydrophilic, with a contact angle in the range of 62.3° to 83.2°.
Collapse
Affiliation(s)
- Peter Šugár
- Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (R.A.); (J.Š.)
| | - Richard Antala
- Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (R.A.); (J.Š.)
| | - Jana Šugárová
- Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (R.A.); (J.Š.)
| | - Jaroslav Kováčik
- Slovak Academy of Sciences, Institute of Materials and Machine Mechanics, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Vladimír Pata
- Department of Production Engineering, Faculty of Technology, Tomas Bata University, Vavrečkova 5669, 960 01 Zlín, Czech Republic;
| |
Collapse
|
2
|
Zara S, Fioravanti G, Ciuffreda A, Annicchiarico C, Quaresima R, Mastrangelo F. Evaluation of Human Gingival Fibroblasts (HGFs) Behavior on Innovative Laser Colored Titanium Surfaces. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4530. [PMID: 37444844 DOI: 10.3390/ma16134530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
The use of ytterbium laser to obtain colored titanium surfaces is a suitable strategy to improve the aesthetic soft tissue results and reduce implant failures in oral rehabilitation. To investigate the relationship between novel laser-colored surfaces and peri-implant soft tissues, Human Gingival Fibroblasts (HGFs) were cultured onto 12 colored titanium grade 1 light fuchsia, dark fuchsia, light gold, and dark gold disks and their viability (MTT Assay), cytotoxicity (lactate dehydrogenase release), and collagen I secretion were compared to the machined surface used as control. Optical and electronic microscopies showed a HGF growth directly correlated to the roughness and wettability of the colored surfaces. A higher viability percentage on dark fuchsia (125%) light gold (122%), and dark gold (119%) samples with respect to the machined surface (100%) was recorded. All specimens showed a statistically significant reduction of LDH release compared to the machined surface. Additionally, a higher collagen type I secretion, responsible for an improved adhesion process, in light fuchsia (3.95 μg/mL) and dark gold (3.61 μg/mL) compared to the machined surface (3.59 μg) was recorded. The in vitro results confirmed the innovative physical titanium improvements due to laser treatment and represent interesting perspectives of innovation in order to ameliorate aesthetic dental implant performance and to obtain more predictable osteo and perio-osteointegration long term implant prognosis.
Collapse
Affiliation(s)
- Susi Zara
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Fioravanti
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Angelo Ciuffreda
- Clinical and Experimental Medicine Department, University of Foggia, 71122 Foggia, Italy
| | | | - Raimondo Quaresima
- Department of Civil, Construction-Architectural and Environmental Engineering, University of L'Aquila, 67100 L'Aquila, Italy
| | - Filiberto Mastrangelo
- Clinical and Experimental Medicine Department, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
3
|
Cervino G, Meto A, Fiorillo L, Odorici A, Meto A, D’Amico C, Oteri G, Cicciù M. Surface Treatment of the Dental Implant with Hyaluronic Acid: An Overview of Recent Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094670. [PMID: 33925742 PMCID: PMC8125310 DOI: 10.3390/ijerph18094670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022]
Abstract
Recently, interest has grown by focusing on the evaluation of a molecule already produced in the human body such as hyaluronic acid (HA), as an application to the surface of the titanium implant. Its osteo-conductive characteristics and positive interaction with the progenitor cells responsible for bone formation, consequently, make it responsible for secondary stability. The aim of this work was to analyze the various surface treatments in titanium implants, demonstrating that the topography and surface chemistry of biomaterials can correlate with the host response; also focusing on the addition of HA to the implant surface and assessing the biological implications during early stages of recovery. Used as a coating, HA acts on the migration, adhesion, proliferation and differentiation of cell precursors on titanium implants by improving the connection between implant and bone. Furthermore, the improvement of the bioactivity of the implant surfaces through HA could therefore facilitate the positioning of the dental prosthesis precisely in the early loading phase, thus satisfying the patients’ requests. It is important to note that all the findings should be supported by further experimental studies in animals as well as humans to evaluate and confirm the use of HA in any field of dentistry.
Collapse
Affiliation(s)
- Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Agron Meto
- Department of Implantology, Faculty of Dentistry, University of Aldent, 1000 Tirana, Albania;
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy
- Correspondence:
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Aida Meto
- Department of Dental Therapy, Faculty of Dental Medicine, University of Medicine, 1005 Tirana, Albania;
| | - Cesare D’Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| |
Collapse
|
4
|
Filiberto M, Daniele B, Franco B, Antonio S, Adriano P, Giovanna I, Raimondo Q. Histological and Histomorphometric Comparison of Innovative Dental Implants Laser Obtained: Animal Pilot Study. MATERIALS 2021; 14:ma14081830. [PMID: 33917152 PMCID: PMC8067823 DOI: 10.3390/ma14081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Evaluation of the in vivo bone response of two innovative titanium surfaces ytterbium laser active fiber obtained (L1-L2) compared to a sandblasted and acid etched (SBAE) during early phase of osseointegration. MATERIAL AND METHODS Three implant groups with the same macroscopic features were obtained (L1-L2-SBAE) to promote specific surface characteristics. Scanning electron microscopy, profilometric evaluation, X-ray spectrometry, and diffraction analysis were performed. For each group, six implants were placed in the tibiae of three Peli Buey sheep, and histologic, histomorphometric analysis, bone to implant contact (BIC), and the Dynamic Osseointegration index (DOI) were performed. RESULTS During the early phases of osseointegration, the histological and histomorphometric results showed significant differences between L1-L2-SBAE implants. At 15 and 30 days, histological analysis detected a newly bone formation around all specimens with an higher vital bone in L2 compared to L1 and SBAE both in cortical and in poor-quality marrow bone. At same time, histomorphometric analysis showed significantly higher BIC values in L2 (42.1 ± 2.6 and 82.4 ± 2.2) compared to L1 (5.2 ± 3.1 and 56.2 ± 1.3) and SBAE (23.3 ± 3.9 and 77.3 ± 0.4). DOI medium value showed a higher rate in L2 (2.83) compared to SBAE (2.60) and L1 (1.91). CONCLUSIONS With the limitations of this pilot study, it is possible to assess that the titanium surface characteristics, and not the technologies used to obtain the modification, played a crucial role during the osseointegration process. Histological, histomorphometric, BIC, and DOI evaluation showed a significantly higher rate in L2 specimens compared to others, confirming that the implant surface could increase the bone response in cortical or marrow poor quality bone during the initial phases of osseointegration.
Collapse
Affiliation(s)
- Mastrangelo Filiberto
- Clinical and Experimental Medicine Department, School of Dentistry, University of Foggia, 77100 Foggia, Italy
- Correspondence:
| | - Botticelli Daniele
- ARDEC Academy, 47923 Rimini, Italy; (B.D.); (B.F.)
- Faculty of Dentistry, University of Medical Science, La Habana 10400, Cuba
| | - Bengazi Franco
- ARDEC Academy, 47923 Rimini, Italy; (B.D.); (B.F.)
- Faculty of Dentistry, University of Medical Science, La Habana 10400, Cuba
| | - Scarano Antonio
- Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, University of Chieti, 66100 Chieti, Italy; (S.A.); (P.A.); (I.G.)
| | - Piattelli Adriano
- Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, University of Chieti, 66100 Chieti, Italy; (S.A.); (P.A.); (I.G.)
| | - Iezzi Giovanna
- Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, University of Chieti, 66100 Chieti, Italy; (S.A.); (P.A.); (I.G.)
| | - Quaresima Raimondo
- Department of Civil, Architecture and Environmental Engineering, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
5
|
Dental Implant Materials: Current State and Future Perspectives. MATERIALS 2021; 14:ma14020371. [PMID: 33466584 PMCID: PMC7828699 DOI: 10.3390/ma14020371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
|
6
|
Deep Neural Networks for Dental Implant System Classification. Biomolecules 2020; 10:biom10070984. [PMID: 32630195 PMCID: PMC7407934 DOI: 10.3390/biom10070984] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
In this study, we used panoramic X-ray images to classify and clarify the accuracy of different dental implant brands via deep convolutional neural networks (CNNs) with transfer-learning strategies. For objective labeling, 8859 implant images of 11 implant systems were used from digital panoramic radiographs obtained from patients who underwent dental implant treatment at Kagawa Prefectural Central Hospital, Japan, between 2005 and 2019. Five deep CNN models (specifically, a basic CNN with three convolutional layers, VGG16 and VGG19 transfer-learning models, and finely tuned VGG16 and VGG19) were evaluated for implant classification. Among the five models, the finely tuned VGG16 model exhibited the highest implant classification performance. The finely tuned VGG19 was second best, followed by the normal transfer-learning VGG16. We confirmed that the finely tuned VGG16 and VGG19 CNNs could accurately classify dental implant systems from 11 types of panoramic X-ray images.
Collapse
|