1
|
Pawelski D, Plonska-Brzezinska ME. Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6549. [PMID: 37834689 PMCID: PMC10573823 DOI: 10.3390/ma16196549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
In this review, we focus on a small section of the literature that deals with the materials containing pristine defective carbon nanostructures (CNs) and those incorporated into the larger systems containing carbon atoms, heteroatoms, and inorganic components.. Briefly, we discuss only those topics that focus on structural defects related to introducing perturbation into the surface topology of the ideal lattice structure. The disorder in the crystal structure may vary in character, size, and location, which significantly modifies the physical and chemical properties of CNs or their hybrid combination. We focus mainly on the method using microwave (MW) irradiation, which is a powerful tool for synthesizing and modifying carbon-based solid materials due to its simplicity, the possibility of conducting the reaction in solvents and solid phases, and the presence of components of different chemical natures. Herein, we will emphasize the advantages of synthesis using MW-assisted heating and indicate the influence of the structure of the obtained materials on their physical and chemical properties. It is the first review paper that comprehensively summarizes research in the context of using MW-assisted heating to modify the structure of CNs, paying attention to its remarkable universality and simplicity. In the final part, we emphasize the role of MW-assisted heating in creating defects in CNs and the implications in designing their properties and applications. The presented review is a valuable source summarizing the achievements of scientists in this area of research.
Collapse
Affiliation(s)
| | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| |
Collapse
|
2
|
Jin C, Wang C, Song S, Zhang Y, Wan J, He L, Qiao Z, E P. Grafting Amino Groups onto Polyimide Films in Flexible Copper-Clad Laminates Using Helicon Plasma. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6214. [PMID: 37763491 PMCID: PMC10532443 DOI: 10.3390/ma16186214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Polyimide (PI) films are widely used in electronic devices owing to their excellent mechanical and electrical properties and high thermal and chemical stabilities. In particular, PI films play an important role in flexible printed circuit boards (FPCBs). However, one challenge currently faced with their use is that the adhesives used in FPCBs cause a high dielectric loss in high-frequency applications. Therefore, it is envisioned that PI films with a low dielectric loss and Cu films can be used to prepare two-layer flexible copper-clad laminates (FCCLs) without any adhesive. However, the preparation of ultra-thin FCCLs with no adhesives is difficult owing to the low peel strength between PI films and Cu films. To address this technical challenge, an FCCL with no adhesive was prepared via high-power helicon wave plasma (HWP) treatment. Field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were tested. Also, the surface roughness of the PI film and the peel strength between the PI film and Cu film were measured. The experimental results show that the surface roughness of the PI film increased by 40-65% and the PI film demonstrated improved adhesion (the peel strength was >8.0 N/cm) with the Cu film following plasma treatment and Cu plating.
Collapse
Affiliation(s)
- Chenggang Jin
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China; (C.J.); (J.W.)
| | - Chen Wang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China;
| | - Shitao Song
- School of Electrical Engineering, Liaoning University of Technology, Jinzhou 121001, China;
| | - Yongqi Zhang
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China;
| | - Jie Wan
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China; (C.J.); (J.W.)
| | - Liang He
- No. 208 Research Institute of China Ordnance Industries, Beijing 102200, China; (L.H.); (Z.Q.)
| | - Ziping Qiao
- No. 208 Research Institute of China Ordnance Industries, Beijing 102200, China; (L.H.); (Z.Q.)
| | - Peng E
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China; (C.J.); (J.W.)
| |
Collapse
|
3
|
Fabrication of nitrogen-doped graphene quantum dots based fluorescent probe and its application for simultaneous, sensitive and selective detection of umami amino acids. Food Chem 2023; 404:134509. [DOI: 10.1016/j.foodchem.2022.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
4
|
Kharlamova MV, Kramberger C. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:640. [PMID: 36839009 PMCID: PMC9961505 DOI: 10.3390/nano13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This paper is dedicated to the discussion of applications of carbon material in electrochemistry. The paper starts with a general discussion on electrochemical doping. Then, investigations by spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The investigation of carbon nanotubes on different substrates is considered. The optical absorption experiments in different electrolyte solutions and substrate materials are discussed. The chemical functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic devices is presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Materials Application (CEMEA) of Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
| | | |
Collapse
|
5
|
Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010278. [PMID: 36615472 PMCID: PMC9822389 DOI: 10.3390/molecules28010278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis-Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, α-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state 31P NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures.
Collapse
|
6
|
Zhang JR, Wang SY, Ge G, Wei M, Hua W, Ma Y. On the choice of shape and size for truncated cluster-based X-ray spectral simulations of 2D materials. J Chem Phys 2022; 157:094704. [DOI: 10.1063/5.0100175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Truncated cluster models represent an effective way for simulating X-ray spectra of 2D materials. Here we systematically assessed the influence of two key parameters, the cluster shape (honeycomb, rectangle, or parallelogram) and size, in X-ray photoelectron (XPS) and absorption (XAS) spectra simulations of three 2D materials at five K-edges (graphene, C 1s; C3N, C/N 1s; h-BN, B/N 1s) to pursue the accuracy limit of binding energy (BE) and spectral profile predictions. Several recent XPS experiments reported BEs with differences spanning 0.3, 1.5, 0.7, 0.3, and 0.3 eV, respectively. Our calculations favor the honeycomb model for stable accuracy and fast size convergence, and a honeycomb with ~10 nm side length (120 atoms) is enough to predict accurate 1s BEs for all 2D sheets. Compared to all these experiments, predicted BEs show absolute deviations as follows: 0.4-0.7, 0.0-1.0, 0.4-1.1, 0.6-0.9, and 0.1-0.4 eV. A mean absolute deviation of 0.3 eV was achieved if we compare only to the closest experiment. We found that the sensitivity of computed BEs to different model shapes depends on systems: graphene, sensitive; C3N, weak; h-BN, very weak. This can be attributed to their more or less delocalized π electrons in this series. For this reason, a larger cluster size is required for graphene than the other two to reproduce fine structures in XAS. The general profile of XAS shows weak dependence to model shape. Our calculations provide optimal parameters and accuracy estimations that are useful for X-ray spectral simulations of general graphene-like 2D materials.
Collapse
Affiliation(s)
| | | | - Guoyan Ge
- Nanjing University of Science and Technology, China
| | - Minrui Wei
- Nanjing University of Science and Technology, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, China
| | - Yong Ma
- School of Physics and Electronics, Shandong Normal University, China
| |
Collapse
|
7
|
Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. MATERIALS 2022; 15:ma15134434. [PMID: 35806559 PMCID: PMC9267296 DOI: 10.3390/ma15134434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023]
Abstract
Recently, the scientific community experienced two revolutionary events. The first was the synthesis of single-layer graphene, which boosted research in many different areas. The second was the advent of quantum technologies with the promise to become pervasive in several aspects of everyday life. In this respect, diamonds and nanodiamonds are among the most promising materials to develop quantum devices. Graphene and nanodiamonds can be coupled with other carbon nanostructures to enhance specific properties or be properly functionalized to tune their quantum response. This contribution briefly explores photoelectron spectroscopies and, in particular, X-ray photoelectron spectroscopy (XPS) and then turns to the present applications of this technique for characterizing carbon nanomaterials. XPS is a qualitative and quantitative chemical analysis technique. It is surface-sensitive due to its limited sampling depth, which confines the analysis only to the outer few top-layers of the material surface. This enables researchers to understand the surface composition of the sample and how the chemistry influences its interaction with the environment. Although the chemical analysis remains the main information provided by XPS, modern instruments couple this information with spatial resolution and mapping or with the possibility to analyze the material in operando conditions at nearly atmospheric pressures. Examples of the application of photoelectron spectroscopies to the characterization of carbon nanostructures will be reviewed to present the potentialities of these techniques.
Collapse
|
8
|
Zhan X, Tong X, Gu M, Tian J, Gao Z, Ma L, Xie Y, Chen Z, Ranganathan H, Zhang G, Sun S. Phosphorus-Doped Graphene Electrocatalysts for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1141. [PMID: 35407259 PMCID: PMC9000525 DOI: 10.3390/nano12071141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
Developing cheap and earth-abundant electrocatalysts with high activity and stability for oxygen reduction reactions (ORRs) is highly desired for the commercial implementation of fuel cells and metal-air batteries. Tremendous efforts have been made on doped-graphene catalysts. However, the progress of phosphorus-doped graphene (P-graphene) for ORRs has rarely been summarized until now. This review focuses on the recent development of P-graphene-based materials, including the various synthesis methods, ORR performance, and ORR mechanism. The applications of single phosphorus atom-doped graphene, phosphorus, nitrogen-codoped graphene (P, N-graphene), as well as phosphorus, multi-atoms codoped graphene (P, X-graphene) as catalysts, supporting materials, and coating materials for ORR are discussed thoroughly. Additionally, the current issues and perspectives for the development of P-graphene materials are proposed.
Collapse
Affiliation(s)
- Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Xin Tong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
- Key Laboratory of Low-Dimensional Materials and Big data, Guizhou Minzu University, Guiyang 550025, China;
| | - Manqi Gu
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Juan Tian
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Zijian Gao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Liying Ma
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Yadian Xie
- Key Laboratory of Low-Dimensional Materials and Big data, Guizhou Minzu University, Guiyang 550025, China;
| | - Zhangsen Chen
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| | - Hariprasad Ranganathan
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| | - Gaixia Zhang
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| | - Shuhui Sun
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| |
Collapse
|
9
|
Tuan Le H, Thuy Nhi Le K, Phuong Ngo Q, Thanh Tran D, Hoon Kim N, Hee Lee J. Mo and Zn-Dual doped Cu xO nanocrystals confined High-Conductive Cu arrays as novel sensitive sensor for neurotransmitter detection. J Colloid Interface Sci 2022; 606:1031-1041. [PMID: 34487926 DOI: 10.1016/j.jcis.2021.08.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
The development of sensitive and selective sensors using facile and low-cost methods for detecting neurotransmitter molecules is a critical factor in the health care system in regard to early diagnosis. In this research, an electrocatalyst derived from Mo,Zn dual-doped CuxO nanocrystals-based layer coating over one-dimensional copper nanowire arrays (Mo,Zn-CuxO/CuNWs) was successfully designed using a facile electrodeposition approach and used as an electrochemical sensor for non-enzymatic dopamine (DA) neurotransmitter detection. The synergistic effect caused by the dual-doping effect along with its excellent conductivity produced a large electroactive surface area and an improved hetero-charge transfer, thereby boosting DA sensing ability with a low limit detection of 0.32 µM, wide-range of detection (0.5 µM - 3.9 mM), long-term stability (5 weeks), and high selectivity in phosphate buffer solution (pH 7.4). Also, the sensor accurately determined DA in real blood serum-spiked solutions. The achieved results evidenced that the Mo,Zn-CuxO/CuNWs derived sensor is highly suitable for DA detection. Therefore, it also opens new windows for the development of low-cost, accurate, high-performance, and stable sensors for other neurotransmitter sensing for the purposes of better health care and early diagnosis.
Collapse
Affiliation(s)
- Huu Tuan Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kha Thuy Nhi Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Quynh Phuong Ngo
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
10
|
Bulushev DA, Nishchakova AD, Trubina SV, Stonkus OA, Asanov IP, Okotrub AV, Bulusheva LG. Ni-N4 sites in a single-atom Ni catalyst on N-doped carbon for hydrogen production from formic acid. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Javed H, Pani S, Antony J, Sakthivel M, Drillet JF. Synthesis of mesoporous carbon spheres via a soft-template route for catalyst supports in PEMFC cathodes. SOFT MATTER 2021; 17:7743-7754. [PMID: 34346470 DOI: 10.1039/d1sm00450f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthesis of carbon spheres via a soft-template route should be further improved for industrial applications especially in terms of time, cost and scalability. The present work reports on the relatively fast production of mesoporous carbon via an ammonia-catalyzed hydrothermal soft-template one-pot route denoted as CFAH with m-aminophenol as the carbon source and triblock copolymer Pluronic® F127 as the template. For comparison, an acidic route with resol as the carbon precursor (CFRH) was evaluated as well. The best results regarding particle size and pore distribution of the as-prepared CFRH and CFAH samples were obtained in 2 M HCl and 6 M NH4OH at 120 °C for 12 h and 700 °C pyrolysis temperature, respectively. GDE with CFRH and CFAH supported platinum showed excellent ECSA retention of about 60-70% during accelerated degradation testing under half-cell conditions compared to only 13% for GDE with Pt/CVulcan reference material.
Collapse
Affiliation(s)
- Hassan Javed
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
12
|
Barcelon JE, Smerieri M, Carraro G, Wojciechowski P, Vattuone L, Rocca M, Nappini S, Píš I, Magnano E, Bondino F, Vaghi L, Papagni A, Savio L. Morphological characterization and electronic properties of pristine and oxygen-exposed graphene nanoribbons on Ag(110). Phys Chem Chem Phys 2021; 23:7926-7937. [PMID: 33403374 DOI: 10.1039/d0cp04051g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene nanoribbons (GNRs) are at the frontier of research on graphene materials since the 1D quantum confinement of electrons allows for the opening of an energy gap. GNRs of uniform and well-defined size and shape can be grown using the bottom-up approach, i.e. by surface assisted polymerization of aromatic hydrocarbons. Since the electronic properties of the nanostructures depend on their width and on their edge states, by careful choice of the precursor molecule it is possible to design GNRs with tailored properties. A key issue for their application in nanoelectronics is their stability under operative conditions. Here, we characterize pristine and oxygen-exposed 1.0 nm wide GNRs with a well-defined mixed edge-site sequence (two zig-zag and one armchair) synthesized on Ag(110) from 1,6-dibromo-pyrene precursors. The energy gap and the presence of quantum confined states are investigated by scanning tunneling spectroscopy. The effect of oxygen exposure under ultra-high vacuum conditions is inferred from scanning tunneling microscopy images and photoemission spectra. Our results demonstrate that oxygen exposure deeply affects the overall system by interacting both with the nanoribbons and with the substrate; this factor must be considered for supported GNRs under operative conditions.
Collapse
|
13
|
da Costa Azevêdo AS, Saraiva-Souza A, Meunier V, Girão EC. Electronic properties of N-rich graphene nano-chevrons. Phys Chem Chem Phys 2021; 23:13204-13215. [PMID: 34085086 DOI: 10.1039/d1cp00197c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical analysis based on density functional theory describes the microscopic origins of emerging electronic and magnetic properties in quasi-1D nitrogen-rich graphene nanoribbon structures with chevron-like (or wiggle-edged) configurations. The study focuses on systems with structural units composed of hexagonal graphitic units featuring one and two nitrogen atoms substituted in the graphitic structure, in positions contrasting with the more commonly considered pyridinic configurations. This type of substitution introduces nitrogen levels close to the Fermi level which in turn induce spin polarization depending on a number of structural features. We demonstrate that these systems present a broader set of electronic and magnetic behaviors relative to their pure hydrocarbon counterparts, with the possibility of engineering the electronic band gap strategically using different spin configurations and positions of the substituting nitrogen atoms.
Collapse
Affiliation(s)
- Anderson Soares da Costa Azevêdo
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil.
| | - Aldilene Saraiva-Souza
- Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, CEP 65080-805, Sao Luís, Maranhão, Brazil
| | - Vincent Meunier
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Eduardo Costa Girão
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil. and Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil
| |
Collapse
|