1
|
Deng H, Liu F, He J. The Effect of Inorganic Filler Content on the Properties of BPA-Free Bulk-Fill Dental Resin Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5040. [PMID: 39459745 PMCID: PMC11509294 DOI: 10.3390/ma17205040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to enhance the performance of dental resin composites (DRCs) by increasing the content of inorganic fillers while addressing potential health risks associated with Bisphenol A (BPA). To achieve this, the BPA-based resin monomer Bis-GMA was replaced with BPA-free Bis-EFMA. The study then explored the impact of varying inorganic filler contents on the physiochemical properties of Bis-EFMA-based bulk-fill dental resin composites (BF-DRCs). Four distinct Bis-EFMA-based BF-DRCs were formulated, each with different inorganic filler contents ranging from 70 wt% to 76 wt%. The study tested the depth of cure (DOC), double-bond conversion (DC), water sorption (WS), solubility (SL), and cytotoxicity of the system. It notably investigated the effects of increasing filler content on mechanical properties through flexural strength (FS), flexural modulus (FM), Vickers microhardness (VHN), and wear resistance, as well as the impact on polymerization shrinkage, including volumetric shrinkage (VS) and shrinkage stress (SS). To assess the commercial application potential of Bis-EFMA-based BF-DRC, the research used the commercially available BF-DRC Filtek Bulk-Fill Posterior (FBF) as a control. The results indicated that a higher filler content did not affect the DOC of Bis-EFMA-based BF-DRCs. Inorganic fillers at higher concentrations significantly enhanced overall mechanical properties while significantly reducing volumetric shrinkage (VS; p < 0.05). When the concentration of inorganic fillers in the resin system reached 76 wt%, most of the performance of the Bis-EFMA-based BF-DRC surpassed that of the commercial control FBF, except for FS, FM, and SS. These findings highlight the potential of Bis-EFMA-based BF-DRC as a long-term restorative material for dental applications.
Collapse
Affiliation(s)
| | | | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.D.); (F.L.)
| |
Collapse
|
2
|
Nozari A, Pakniyat Jahromi M, Haji Abbas Oghli F, Jowkar Z, Hamidi SA. Influence of Different Application Modes of a Universal Adhesive System on the Bond Strength of Bulk-Fill Composite Resin to Enamel and Dentin in Primary Teeth. Clin Exp Dent Res 2024; 10:e947. [PMID: 39205379 PMCID: PMC11358215 DOI: 10.1002/cre2.947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The objective of this study was to assess how the application mode of a universal adhesive system affects the microshear bond strength (μSBS) of bulk-fill and conventional composite resins to enamel and dentin in primary teeth. METHODS A total of 80 caries-free primary second molars were randomly assigned to eight experimental groups (n = 10) based on the bonding substrate (enamel or dentin), the application mode of the universal adhesive system (etch and rinse [E&R], or self-etch [SE]), and the type of composite resin used (bulk-fill or conventional). After bonding the composite resin to enamel or dentin, the μSBS of the bonded composite resins was measured. RESULTS The mean μSBS value of bulk-fill composite resin was significantly higher than that of conventional composite resin for both enamel and dentin substrates, regardless of the application mode (p < 0.001). An interaction effect between the bonding substrate and the application mode of the adhesive system was observed, indicating a significant relationship (p < 0.001). The highest μSBS values for primary teeth enamel were achieved using the E&R mode with bulk-fill composite resin, while for dentin specimens, the SE mode with bulk-fill composite resin yielded the highest μSBS values. The μSBS of the E&R group was significantly higher than that of the SE group for enamel specimens (p < 0.001), whereas the μSBS of the SE group was significantly higher than that of the E&R group for dentin specimens (p < 0.001). CONCLUSION Bulk-fill composite resin demonstrated higher μSBS in comparison to conventional composite resin. The universal adhesive system exhibited superior performance in the SE mode compared to the E&R mode on primary dentin. Pre-etching the enamel before the application of the universal adhesive enhanced the μSBS to primary teeth enamel, highlighting the importance of selectively acid etching the enamel of primary teeth.
Collapse
Affiliation(s)
- Ali Nozari
- Department of Pediatric Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Maryam Pakniyat Jahromi
- Department of Pediatric Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Farnaz Haji Abbas Oghli
- Department of Pediatric Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Zahra Jowkar
- Oral and Dental Disease Research Center, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Seyed Ahmadreza Hamidi
- Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
3
|
Bengal S, Badole GP, Shenoi PR, Kubde R, Shahu S. Evaluation of Surface Roughness and Microhardness of Bulk-fill and Nanohybrid Composite after Exposure to Different Beverages at Various Time Intervals - An In vitro Study. Ann Afr Med 2024; 23:466-473. [PMID: 39034574 PMCID: PMC11364335 DOI: 10.4103/aam.aam_157_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024] Open
Abstract
AIM The aim of the study was to compare the surface roughness and microhardness of bulk-fill composite and nanohybrid composite resin after exposure to three different beverages at different time intervals. METHODOLOGY In this study, 60 composite discs each for bulk fill and nanohybrid, of dimensions 10 mm × 2 mm were made. Both composites were randomly divided into four subgroups, i.e., 15 samples each for artificial saliva, tea, coffee, and soft drinks which were further subdivided into five samples for three time intervals. Composite resin discs were immersed in beverages for 4 min in 24 h for 7, 15, and 30 days. All samples were evaluated for surface roughness and microhardness before and after immersion. RESULTS Both the composites showed a significant increase in surface roughness in all the beverages with maximum change in surface roughness observed in nanohybrid composite resin immersed in soft drinks. Furthermore, the microhardness of both the composites was decreased significantly in all beverages with maximum change in microhardness observed in nanohybrid composite resin immersed in soft drinks. CONCLUSIONS Bulk-fill composite resin has better resistance to surface roughness and higher microhardness as compared to nanohybrid. Furthermore, acidic beverages highly affect the physical properties of both composite resins for longer periods.
Collapse
Affiliation(s)
- Sachin Bengal
- Department of Conservative Dentistry and Endodontics, VSPM’S Dental College and Research Center, Nagpur, Maharashtra, India
| | - Gautam P. Badole
- Department of Conservative Dentistry and Endodontics, VSPM’S Dental College and Research Center, Nagpur, Maharashtra, India
| | - Pratima R. Shenoi
- Department of Conservative Dentistry and Endodontics, VSPM’S Dental College and Research Center, Nagpur, Maharashtra, India
| | - Rajesh Kubde
- Department of Conservative Dentistry and Endodontics, VSPM’S Dental College and Research Center, Nagpur, Maharashtra, India
| | - Shriya Shahu
- Department of Conservative Dentistry and Endodontics, VSPM’S Dental College and Research Center, Nagpur, Maharashtra, India
| |
Collapse
|
4
|
Almoammar S, Kamran MA, Alnazeh AA, Almagbol M, Al Jearah MM, Mannakandath ML. Orthodontic adhesive loaded with different proportions of ZrO 2 silver-doped nanoparticles: An in vitro μTBS, SEM, EDX, FTIR, and antimicrobial analysis. Microsc Res Tech 2024; 87:1146-1156. [PMID: 38278778 DOI: 10.1002/jemt.24503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Zirconium dioxide silver-doped nanoparticles (ZrO2AgDNPs) impacts the adhesive material in terms of its physical characteristics, antimicrobial properties, degree of conversion (DC), and micro-tensile bond strength (μTBS) of orthodontic brackets to the enamel surface. A comprehensive methodological analysis utilizing a range of analytical techniques, including scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, DC analysis, and μTBS testing. A light-curable orthodontic adhesive, specifically Transbond XT, was combined with ZrO2AgDNPs at 2.5% and 5%. As a control, an adhesive with no incorporation of ZrO2AgDNPs was also prepared. The tooth samples were divided into three groups based on the weightage of NPs: group 1: 0% ZrO2AgDNPs (control), group 2: 2.5 wt% ZrO2AgDNPs, and group 3: 5 wt% ZrO2AgDNPs. EDX graph demonstrated silver (Ag), Zirconium (Zr), and Oxygen (O2), The antibacterial efficacy of adhesives with different concentrations of NPs (0%, 2.5%, and 5%) was assessed using the pour plate method. The FTIR spectra were analyzed to identify peaks at 1607 cm-1 corresponding to aromatic CC bonds and the peaks at 1638 cm-1 indicating the presence of aliphatic CC bonds. The μTBS was assessed using universal testing machine (UTM) and bond failure of orthodontic brackets was seen using adhesive remanent index (ARI) analysis. Kruskal-Wallis test assessed the disparities in survival rates of Streptococcus mutans. Analysis of variance (ANOVA) and post hoc Tukey multiple comparisons test calculated μTBS values. The lowest μTBS was observed in group 1 adhesive loaded with 0% ZrO2AgDNPs (21.25 ± 1.22 MPa). Whereas, the highest μTBS was found in group 3 (26.19 ± 1.07 MPa) adhesive loaded with 5% ZrO2AgDNPs. ZrO2AgDNPs in orthodontic adhesive improved μTBS and has acceptable antibacterial activity against S mutans. ZrO2AgDNPs at 5% by weight can be used in orthodontic adhesive alternative to the conventional method of orthodontic adhesive for bracket bonding. RESEARCH HIGHLIGHTS: The highest μTBS was found in orthodontic adhesive loaded with 5% ZrO2AgDNPs. ARI analysis indicates that the majority of the failures fell between 0 and 1 among all investigated groups. The colony-forming unit count of S. mutans was significantly less in orthodontic adhesive loaded with nanoparticles compared with control. The 0% ZrO2AgDNPs adhesive showed the highest DC.
Collapse
Affiliation(s)
- Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Abdullah A Alnazeh
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Almagbol
- Department of Community and Periodontics, Faculty of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | - Master Luqman Mannakandath
- Department of Oral Diagnosis and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Al-Qahtani AS, Almutairi B, Al-Hamdan RS, Alzahrani KM. Remineralizing pretreatment using casein phosphopeptide-amorphous calcium phosphate fluoride, self-assembling peptide, and nanohydroxyapatite gel activation via invisible infrared light on the dentin microhardness and micro shear bond strength to the composite restoration. Photodiagnosis Photodyn Ther 2024; 47:104210. [PMID: 38729233 DOI: 10.1016/j.pdpdt.2024.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
AIM Different remineralizing pretreatments Casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF), tricalcium phosphate fluoride (TCP-F), self-assembling peptide (SAP) P11-4 and 10 % Nanohydroxyapatite (nHA) gel activation via invisible infrared light on the dentin microhardness (MH) and micro shear bond strength (µSBS) of composite restoration. METHODS Seventy-five human molar teeth were collected and the dentinal surface of all the samples was exposed to different demineralizing solutions. (n = 15) Group 1 (demineralized dentin), Group 2 (CPP ACP), Group 3 (TCP-F), Group 4 (SAP P11-4), Group 5 (nHA gel activation via invisible infrared light). MH assessment was performed using Vickers hardness. Each group of 10 samples was subjected to composite restoration buildup and µSBS were tested. The debonded samples were then observed under a stereo-microscope for failure analysis. ANOVA was conducted, along with Tukey's post hoc analysis, to examine the µSBS of composite and MH of the remineralized surface. RESULTS nHA gel activation via invisible infrared light pretreated specimens showed the maximum outcomes of surface hardness (331.2 ± 77.3) and bond strength (10.38 ± 2.77). However, Group 4 (SAP P11-4) (148.3 ± 29.2) remineralized dentin displayed minimum scores of MH and µSBS (5.88 ± 1.01). CONCLUSION Remineralizing pretreatment nHA gel activation via invisible infrared light and casein phosphopeptide-amorphous calcium phosphate fluoride seem to improve the dentin MH and µSBS of the composite restoration.
Collapse
Affiliation(s)
- Amal S Al-Qahtani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, 11545, Saudi Arabia
| | - Basil Almutairi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, King Saud University, P. O. Box 60169, Riyadh, 11545, Saudi Arabia.
| | - Rana S Al-Hamdan
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, King Saud University, P. O. Box 60169, Riyadh, 11545, Saudi Arabia
| | - Khaled M Alzahrani
- Department of Prosthetic Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| |
Collapse
|
6
|
Alouch E, Karkoutly M, Teriaky O. Effect of various staining beverages on the color stability of CAD/CAM PMMA denture teeth: An in vitro study. Clin Exp Dent Res 2024; 10:e869. [PMID: 38433287 PMCID: PMC10909787 DOI: 10.1002/cre2.869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This study aimed to compare the color change of computer-aided design (CAD)/computer-aided manufacturing (CAM) polymethyl methacrylate (PMMA) denture teeth and conventional acrylic teeth after immersion in three staining beverages (coffee, red tea, and cola) for a day, 7 days, and 30 days. MATERIALS AND METHODS Group 1: Conventional acrylic teeth (n = 32). Group 2: Milled CAD/CAM teeth out of PMMA disc (n = 32). The specimens of each material were further divided into four subgroups: (1) Control group, distilled water (n = 16). (2) Red tea solution (n = 16). (3) Coffee solution (n = 16). (4) Cola (n = 16). The color change (∆ E $\unicode{x02206}E$ ) was assessed using a spectrophotometer at four time points: at the baseline (t0 ), on the 1st day (t1 ), on the 7th day (t2 ), and the 30th day (t3 ) of immersion. Kolmogorov-Smirnov test was applied, followed by performing independent samples t test, one-way analysis of variance and post-hoc Tukey tests to compare the color change values at different time points. RESULTS The mean score of NBS values of the coffee solution indicates perceivable color change at the end of the 30th day in the conventional acrylic teeth group. It was 0.843 ± 0.395 at t1 , then increased to 1.017 ± 0.477 at t2 and to 2.259 ± 1.059 at t3 . There is a statistically significant difference (p < 0.05) in color change values between both tooth types at the end of the 30th day of immersion in red tea solution and a statistically significant difference at the end of the 7th day (p < 0.05) and the 30th day (p < 0.05) of immersion in coffee solution. CONCLUSIONS CAD/CAM PMMA teeth are more color stable than conventional acrylic teeth after 30 days of immersion in coffee and red tea solution.
Collapse
Affiliation(s)
- Ehab Alouch
- Department of Removable ProsthodonticsDamascus UniversityDamascusSyrian Arab Republic
| | - Mawia Karkoutly
- Department of Pediatric DentistryDamascus UniversityDamascusSyrian Arab Republic
| | - Omar Teriaky
- Department of Removable ProsthodonticsDamascus UniversityDamascusSyrian Arab Republic
| |
Collapse
|
7
|
Mansoor MA, Sayed ME, Abdul HN, Zaidan MS, Hakami TM, Dighriri MA, Alqahtani SM, Alfaifi MA, Altoman MS, Jokhadar HF, AlResayes SS, AlWadei MH, Jundus AI, Komosany AM, Al-Najjar HZ. Comparative Accuracy of Intraoral and Extraoral Digital Workflows for Short Span Implant Supported Fixed Partial Denture Fabrication: An In Vitro Study. Med Sci Monit 2024; 30:e943706. [PMID: 38500254 PMCID: PMC10960501 DOI: 10.12659/msm.943706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The advent of digital impressions using computer-aided design and manufacturing technology (CAD/CAM) has simplified and improved the fabrication of implant prostheses in dentistry. The conventional impression has several drawbacks, including tray selection, material type, impression technique, impression disinfection, and cast model storage. The inaccuracies caused by distortion and contraction of impression material can be minimized with digital impressions. This study aimed to compare digital dental impressions of 10 working casts made using the Pindex laser removable die system to fabricate parallel drill channels vs 10 working casts made using the Di-Lok plastic tray removable die system. MATERIAL AND METHODS An implant master die with 2 dental implant analogs was fabricated. Ten working casts using the Pindex laser removable die system with parallel drill channels and 10 working casts using the Di-Lok plastic tray removable die system were fabricated. The working casts were scanned using an extra-oral laboratory scanner and the implant master model was scanned with an intra-oral scanner. RESULTS The properties of the casts made using the 2 systems were evaluated and analyzed with ANOVA and post hoc Tukey test. The mean horizontal linear distances between A1B1 (P<0.021), A2B2 (P<0.018), C1D1 (P<0.026), C2D2 (P<0.03), B1C1 (P<0.01), and mean vertical distances between B1A2 (P<0.015), C1D2 (P<0.001), B1B2 (P<0.028), and C1C2 (P<0.001) were significantly different between the Pindex system and Di-Lok tray system as compared to intra-oral scans. CONCLUSIONS Complete digital workflow with intra-oral scans were more than the partial digital workflow with extra-oral scans for the Pindex system and Di-Lok tray systems.
Collapse
Affiliation(s)
- Manawar Ahmad Mansoor
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Mohammed E. Sayed
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hina Naim Abdul
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | - Saeed M. Alqahtani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Alfaifi
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Majed S. Altoman
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Hossam F. Jokhadar
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad Saleh AlResayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed H. AlWadei
- Department of Restorative Dental Science, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | | |
Collapse
|
8
|
Eichler E, Vach K, Schlueter N, Jacker-Guhr S, Luehrs AK. Dentin adhesion of bulk-fill composites and universal adhesives in class I-cavities with high C-factor. J Dent 2024; 142:104852. [PMID: 38244909 DOI: 10.1016/j.jdent.2024.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES The aim of this study was to compare the dentin adhesion of bulk-fill composites in high C-factor class I-cavities before and after thermocycling to a control group using incremental layering technique. METHODS A standardized class I-cavity was prepared into 195 human molars, then different universal adhesives were applied either in self-etch or etch & rinse mode, and the cavity was filled according to each materials application protocol. The material combinations used were a conventional layered composite as control, the respective bulk-fill product, two other bulk-fill composites made by different manufacturers, with one of them being tested using two different polymerization times. Furthermore, one thermoviscous bulk-fill composite and one self-adhesive restorative were examined of which the latter can only be applied in self-etch mode. In each group the dentin adhesion to the cavity bottom was measured using microtensile bond strength test initially (24 h water storage) and after thermocycling. All results were statistically analyzed using STATA 17.0. RESULTS The statistical analysis showed significant differences between the control and the experimental groups (p < 0.001). The highest mean bond strength before (14.8 ± 10.7 MPa) and after aging (14.2 ± 11.5 MPa) was measured for the etch & rinse-control group. Among the bulk-fill groups, the etch & rinse technique consistently showed higher bond strengths. Bond strength of groups with shortened polymerization did not exceed 2.1 MPa. The bond strength of the self-adhesive restoration material was low before and after thermocycling (2.7 MPa/ 0.0 MPa). Groups with low bond strength values showed a high number of pre-testing-failures. CONCLUSIONS Bulk-fill materials used in high C-factor class I-cavities showed lower bond strength during self-etch application. The same applies for a shortened polymerization regime, which cannot be recommended for high C-factor cavities. CLINICAL SIGNIFICANCE Today, a large variety of materials and application techniques can be used when placing an adhesive restoration. Whether new instead of established procedures should be applied in high C-factor cavities has to be critically assessed, as they are a demanding scenario for adhesive restorations.
Collapse
Affiliation(s)
- Erik Eichler
- Hannover Medical School, Department of Conservative Dentistry, Periodontology and Preventive Dentistry, OE 7740, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Kirstin Vach
- Hannover Medical School, Department of Conservative Dentistry, Periodontology and Preventive Dentistry, OE 7740, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Nadine Schlueter
- Hannover Medical School, Department of Conservative Dentistry, Periodontology and Preventive Dentistry, OE 7740, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Silke Jacker-Guhr
- Hannover Medical School, Department of Conservative Dentistry, Periodontology and Preventive Dentistry, OE 7740, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Anne-Katrin Luehrs
- Hannover Medical School, Department of Conservative Dentistry, Periodontology and Preventive Dentistry, OE 7740, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| |
Collapse
|
9
|
Gandini P, Scribante A. Clinical Applications for Dentistry and Oral Health, 2nd Volume. APPLIED SCIENCES 2024; 14:2009. [DOI: 10.3390/app14052009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In recent years, dentistry has extended the aspects of its research and its cooperation with other disciplines [...]
Collapse
Affiliation(s)
- Paola Gandini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Blagec T, Šimunović L, Pili Gjumlić S, Šutej I, Meštrović S. Influence of pH levels and beverage exposure on force decay and color stability of orthodontic elastomeric chains: An experimental study. Saudi Dent J 2024; 36:308-314. [PMID: 38420000 PMCID: PMC10897612 DOI: 10.1016/j.sdentj.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 03/02/2024] Open
Abstract
Aim of study To assess the impact of pH level on force decay and color stability of orthodontic elastomeric chains (EOC) after exposure to commonly used beverages. Materials and methods A total of 120 chain cuts were prepared from 2 different manufacturers (GC Orthodontics Europe GmbH, Breckerfeld, Germany, and FORESTADENT® - Bernhard Foerster GmbH, Pforzheim, Germany). According to the distance between loops, two types of chains were selected from each manufacturer: short and medium ones. Chains were immersed into 10 commonly used beverages with different pH values. After 7 days, force degradation was evaluated with the universal machine for mechanical testing (Model 4411; Instron, Canton, USA) and color change using a VITA Easyshade® digital spectrophotometer. Kruskal-Wallis with post-hoc Dunn's test for intergroup comparison and Wilcoxon rank test for intragroup comparison. Results Initial force varied among EOC brands, with GC short chains having the highest force and Forestadent medium chains the lowest. The most pronounced force decay occurred within 24 h, notably affecting Forestadent short chains the most, followed by Forestadent medium, GC short, and GC medium chains. Despite a higher force drop rate over seven days, short EOCs maintained higher forces than medium EOCs. GC EOCs consistently maintained higher forces after seven days compared to Forestadent EOCs. After the immersion of EOC in different solutions for 24 h, only Evian water, Soy milk, and Coconut water did not change color. After 7 days, the greatest color change was recorded in coffee. Conclusion There is no correlation between pH value and force decay of polyurethane chains. Short chains showed more constant force delivery and greater value of remaining force in comparison to medium ones. Color stability was mostly affected by coffee, followed by matcha tea, soy milk, and apple juice.
Collapse
Affiliation(s)
- Tadeja Blagec
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Šimunović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Ivana Šutej
- Department of Pharmacology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Senka Meštrović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Viana G, Virji I, Susarchick L, Allareddy V, Lown S, Gruber M, Lukic H, Megremis S, Atsawasuwan P. Comparison of light transmittance and color changes between polyurethane and copolyester retainer materials after staining and destaining. BMC Oral Health 2024; 24:144. [PMID: 38297268 PMCID: PMC10829172 DOI: 10.1186/s12903-024-03887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Retainers are the only effective approach to prevent orthodontic relapse. The aim of this study was to compare the changes in color and light-transmittance of rough and smooth thermoformed polyurethane and copolymer retainer samples after staining in different solutions and destaining with different approaches. METHODS Four hundred copolyester (Essix® ACE) and 400 polyurethane (Zendura®) samples with different surface textures, smooth and rough, were stained in 4 different solutions (n = 100 per solution) over 28 days. Each of the four groups of 100 stained samples of each material was subdivided into 5 groups of 20 samples and subjected to different destaining solutions. Light transmittance and color changes were evaluated using a spectrometer and a spectrophotometer. Mean differences were compared using a two-way analysis of variance (ANOVA) and posthoc multiple comparison tests at P = 0.05. RESULTS No significant differences in light transmittance were found between both untreated materials. Both materials were stained in a similar fashion and showed no significant differences between two materials after staining. Coffee and tea stained both materials more significantly than wine, but there was a significant difference of changes of color and light transmittance between rough and smooth surfaces during the destaining in coffee- and tea-stained samples of copolyester material. All destaining solutions were effective at removing all stains on the samples. The surface roughness of the material plays a significant role in the ability of the materials to be destained, demonstrating a more significant greater effect on cleaning rough samples for improvements in light-transmittance and greater changes in color. CONCLUSIONS This study concluded that the surface of materials plays a significant role in the material destaining and staining. In addition, the different polymers used for retainer fabrication exhibited different responses during the destaining process depending on types of stains.
Collapse
Affiliation(s)
- Grace Viana
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Insia Virji
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Laurie Susarchick
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | | | - Sullivan Lown
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Max Gruber
- Dental Materials & Devices Research - American Dental Association, Chicago, IL, 60610, USA
| | - Henry Lukic
- Dental Materials & Devices Research - American Dental Association, Chicago, IL, 60610, USA
| | - Spiro Megremis
- Dental Materials & Devices Research - American Dental Association, Chicago, IL, 60610, USA
| | - Phimon Atsawasuwan
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Păstrav M, Păstrav O, Chisnoiu AM, Chisnoiu RM, Cuc S, Petean I, Saroși C, Feștilă D. Properties of Nanohybrid Dental Composites-A Comparative In Vitro Study. Biomedicines 2024; 12:243. [PMID: 38275414 PMCID: PMC10813110 DOI: 10.3390/biomedicines12010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: the current study investigated three nanohybrid composites: two commercial products ClearfilMajestyTM (CM) and HarmonizeTM (HU), compared with an experimental product PS2. (2) Methods: Two sample types were molded using Teflon dies. The first sample type was represented by standard discs (20 mm diameter and 2 mm thickness) (n = 60, 20/each material), used for surface conditioning investigation, specifically roughness monitoring and color stability analysis using AFM and the CIELab test, respectively. The second sample type was a standard cylindrical specimen (4 mm diameter and 6 mm height) for compression testing (n = 60, 20/each material). After complete polymerization, the samples were ground with sandpaper and further polished. The filler size and distribution in the polymer matrix were investigated with SEM. Data were statistically analyzed using the Anova Test followed by Tukey's post hoc test on the Origin Lab 2019 software produced by OriginLab Corporation, Northampton, MA, USA. (3) Results: A mono-disperse system was identified in HU samples, while CM and PS2 revealed both nano- and microfiller particles. The samples' observation after immersion in coffee and tea indicated that a lower roughness combined with optimal filler lamination within the polymer matrix assured the best color preservation. The compression strength was lower for the HU sample, while higher values were obtained for the complex filler systems within CM and PS2. (4) Conclusions: the behavior of the investigated nanohybrid composites strongly depends on the microstructural features.
Collapse
Affiliation(s)
- Mihaela Păstrav
- Department of Orthodontics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.P.); (D.F.)
| | - Ovidiu Păstrav
- Department of Odontology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Andrea Maria Chisnoiu
- Department of Prosthodontics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Radu Marcel Chisnoiu
- Department of Odontology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Stanca Cuc
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania; (S.C.); (C.S.)
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania;
| | - Codruța Saroși
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania; (S.C.); (C.S.)
| | - Dana Feștilă
- Department of Orthodontics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.P.); (D.F.)
| |
Collapse
|
13
|
Frąckiewicz W, Królikowski M, Kwiatkowski K, Sobolewska E, Szymlet P, Tomasik M. Comparison of Dental Zirconium Oxide Ceramics Produced Using Additive and Removal Technology for Prosthodontics and Restorative Dentistry-Strength and Surface Tests: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 17:168. [PMID: 38204022 PMCID: PMC10779906 DOI: 10.3390/ma17010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The aim of this in vitro study was to determine the mechanical and functional properties of zirconium oxide ceramics made using 3D printing technology and ceramics produced using conventional dental milling machines. METHODS Forty zirconia samples were prepared for this study: the control group consisted of 20 samples made using milling technology, and the test group consisted of 20 samples made using 3D printing technology. Their surface parameters were measured, and then their mechanical parameters were checked and compared. Density, hardness, flexural strength and compressive strength were tested by performing appropriate in vitro tests. After the strength tests, a comparative analysis of the geometric structure of the surfaces of both materials was performed again. Student's t-test was used to evaluate the results (p < 0.01). RESULTS Both ceramics show comparable values of mechanical parameters, and the differences are not statistically significant. The geometric structure of the sample surfaces looks very similar. Only minor changes in the structure near the crack were observed in the AM group. CONCLUSION Ceramics made using additive technology have similar mechanical and surface parameters to milled zirconium oxide, which is one of the arguments for the introduction of this material into clinical practice. This in vitro study has shown that this ceramic can compete with zirconium made using CAD/CAM (Computer-Aided Design and Computer-Aided Manufacturing) methods.
Collapse
Affiliation(s)
- Wojciech Frąckiewicz
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Marcin Królikowski
- Department of Manufacturing Engineering, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland
| | - Konrad Kwiatkowski
- Department of Mechanics and Fundamentals of Machine Design, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland
| | - Ewa Sobolewska
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Paweł Szymlet
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Tomasik
- Department of Interdisciplinary Dentistry, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
14
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Alnofaiy IA, De Vera MAT. Advancing Dimethacrylate Dental Composites by Synergy of Pre-Polymerized TEGDMA Co-Filler: A Physio-Mechanical Evaluation. Biomimetics (Basel) 2023; 8:577. [PMID: 38132515 PMCID: PMC10741395 DOI: 10.3390/biomimetics8080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Dental resin composites (DRCs) have gained immense popularity as filling material in direct dental restorations. They are highly valued for their ability to closely resemble natural teeth and withstand harsh oral conditions. To increase the clinical performance of dental restorations, various fillers are incorporated into DRCs. Herein, the effect of incorporating pre-polymerized triethylene glycol dimethacrylate (P-TEGDMA) as a co-filler in varying proportions (0%, 2.5%, 5%, and 10% by weight) into bisphenol A-glycidyl methacrylate (BisGMA)/TEGDMA/SiO2 resin composite was investigated. The obtained DRCs were examined for morphology, rheological properties, degree of crosslinking (DC), Vickers microhardness (VMH), thermal stability, and flexural strength (FS). The results revealed that SiO2 and P-TEGDMA particles were uniformly dispersed. The introduction of P-TEGDMA particles (2.5 wt.%) into the resin composite had a remarkable effect, leading to a significant reduction (p ≤ 0.05) in complex viscosity, decreasing from 393.84 ± 21.65 Pa.s to 152.84 ± 23.94 Pa.s. As a result, the DC was significantly (p ≤ 0.05) improved from 61.76 ± 3.80% to 68.77 ± 2.31%. In addition, the composite mixture demonstrated a higher storage modulus (G') than loss modulus (G″), indicative of its predominantly elastic nature. Moreover, the thermal stability of the DRCs was improved with the addition of P-TEGDMA particles by increasing the degradation temperature from 410 °C to 440 °C. However, the VMH was negatively affected. The study suggests that P-TEGDMA particles have the potential to be used as co-fillers alongside other inorganic fillers, offering a means to fine-tune the properties of DRCs and optimize their clinical performance.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Leonel S. Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Ibraheem A. Alnofaiy
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.A.); (M.A.T.D.V.)
| | - Merry Angelyn Tan De Vera
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.A.); (M.A.T.D.V.)
| |
Collapse
|
15
|
Al-Makramani BM, Sayed ME, Al-Sanabani FA, Mattoo KA, Alqahtani NM, Alqahtani SM, Jokhadar HF, AlResayes SS, Alamri M, AlWadei MH, Motlaq K, Alshehri FH, Alshahrani AA, Eshaq R. Comparative Evaluation of Dimensional and Occlusal Accuracy of Non-Working Antagonist Casts: A Study on Different Impression Materials and 3D Printing. Med Sci Monit 2023; 29:e941654. [PMID: 37924203 PMCID: PMC10631232 DOI: 10.12659/msm.941654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The aim of this study was to assess and compare the vertical/horizontal dimensions and occlusal accuracy of non-working/opposing casts obtained from three different impression materials and 3D print cast. MATERIAL AND METHODS Dentulous Master models simulating a case of a fixed dental prosthesis were mounted on an articulator (control group). Opposing mandibular casts obtained from three different impression materialsand 3-dimensional print constituted test groups , ,and , respectively. Three points, anterior vertical (AV), posterior vertical (PV), and anteroposterior (AP) were compared for dimensional accuracy among casts. Occlusal accuracy was analyzed on Medit Link software at 3 teeth (#13, #17, and #27). After calculating means for each group, the differences were calculated at probability value of P≤0.05 using the single-sample t test, ANOVA, and Tukey test. RESULTS The dimensions were significantly different from those of the mounted master models except in Gp AL(E) and Gp AL(F) at AV dimension and Gp AL(E) at AP dimension (P>0.05). A statistically significant difference of the error of means among the 4 tested groupswere detected only at 2 dimensions (AV and PV) between the Gp AL(E) and Gp 3D-C and between Gp AL(F) and Gp 3D-C groups. Other groups showed no significant differences. CONCLUSIONS The opposing casts obtained from the extended-pour alginate and alginate alternative impression materials showed higher occlusal accuracy compared to conventional alginate and 3D printed casts.
Collapse
Affiliation(s)
- Bandar M.A. Al-Makramani
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan,
Saudi Arabia
| | - Mohammed E. Sayed
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan,
Saudi Arabia
| | - Fuad A. Al-Sanabani
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan,
Saudi Arabia
| | - Khurshid Ahmed Mattoo
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan,
Saudi Arabia
| | - Nasser M. Alqahtani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha,
Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha,
Saudi Arabia
| | - Hossam F. Jokhadar
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Saad Saleh AlResayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh,
Saudi Arabia
| | - Mohammad Alamri
- Department of Restorative Dental Science, College of Dentistry, King Khalid University, Abha,
Saudi Arabia
| | - Mohammed H. AlWadei
- Department of Restorative Dental Science, College of Dentistry, King Khalid University, Abha,
Saudi Arabia
| | - Khalid Motlaq
- Department of Restorative Dental Science, College of Dentistry, King Khalid University, Abha,
Saudi Arabia
- Department of Restorative Dental Science, King Faisal Medical City, Abha,
Saudi Arabia
| | - Faisal Hasan Alshehri
- Department of Restorative Dental Science, College of Dentistry, King Khalid University, Abha,
Saudi Arabia
| | - Ahid Amer Alshahrani
- Department of Dental Technology, Applied Medical Sciences, King Khalid University, Abha,
Saudi Arabia
| | - Rami Eshaq
- Intern, College of Dentistry, Jazan University, Jazan,
Saudi Arabia
| |
Collapse
|
16
|
Al-Odayni AB, Al-Kahtani HM, Sharaf Saeed W, Al-Kahtani A, Aouak T, Khan R, De Vera MAT, Alrahlah A. Physical-Chemical and Microhardness Properties of Model Dental Composites Containing 1,2-Bismethacrylate-3-eugenyl Propane Monomer. Biomimetics (Basel) 2023; 8:511. [PMID: 37999152 PMCID: PMC10669855 DOI: 10.3390/biomimetics8070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
A new eugenyl dimethacrylated monomer (symbolled BisMEP) has recently been synthesized. It showed promising viscosity and polymerizability as resin for dental composite. As a new monomer, BisMEP must be assessed further; thus, various physical, chemical, and mechanical properties have to be investigated. In this work, the aim was to investigate the potential use of BisMEP in place of the BisGMA matrix of resin-based composites (RBCs), totally or partially. Therefore, a list of model composites (CEa0, CEa25, CEa50, and CEa100) were prepared, which made up of 66 wt% synthesized silica fillers and 34 wt% organic matrices (BisGMA and TEGDMA; 1:1 wt/wt), while the novel BisMEP monomer has replaced the BisGMA content as 0.0, 25, 50, and 100 wt%, respectively. The RBCs were analyzed for their degree of conversion (DC)-based depth of cure at 1 and 2 mm thickness (DC1 and DC2), Vickers hardness (HV), water uptake (WSP), and water solubility (WSL) properties. Data were statistically analyzed using IBM SPSS v21, and the significance level was taken as p < 0.05. The results revealed no significant differences (p > 0.05) in the DC at 1 and 2 mm depth for the same composite. No significant differences in the DC between CEa0, CEa25, and CEa50; however, the difference becomes substantial (p < 0.05) with CEa100, suggesting possible incorporation of BisMEP at low dosage. Furthermore, DC1 for CEa0-CEa50 and DC2 for CEa0-CEa25 were found to be above the proposed minimum limit DC of 55%. Statistical analysis of the HV data showed no significant difference between CEa0, CEa25, and CEa50, while the difference became statistically significant after totally replacing BisGMA with BisMEP (CEa100). Notably, no significant differences in the WSP of various composites were detected. Likewise, WSL tests revealed no significant differences between such composites. These results suggest the possible usage of BisMEP in a mixture with BisGMA with no significant adverse effect on the DC, HV, WSP, and degradation (WSL).
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdullah Al-Kahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
17
|
Hamdy TM. Evaluation of compressive strength, surface microhardness, solubility and antimicrobial effect of glass ionomer dental cement reinforced with silver doped carbon nanotube fillers. BMC Oral Health 2023; 23:777. [PMID: 37872523 PMCID: PMC10591371 DOI: 10.1186/s12903-023-03542-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Conventional glass ionomer cements (GICs) are currently the most widely used dental cements due to their chemical bonding into tooth structure, release of fluoride, and ease of manipulation and usage. One of their drawbacks is their low mechanical properties and high solubility. Carbon nanotubes (CNTs) could be utilized in dentistry due to their several potential applications. CNTs can be used as fillers to reinforce polymers or other materials. Additionally, silver (Ag) nanoparticles are highly effective at preventing dental biofilm and enhancing mechanical properties. OBJECTIVES The aim of the present in vitro study is to evaluate the compressive strength, surface microhardness, solubility, and antimicrobial effect of the conventional GIC reinforced with manual blending of 0.01 wt.% Ag doped CNT fillers. METHODS The control group was prepared by mixing dental GIC powder with their liquid. The innovatively reinforced dental GIC group was prepared by incorporating 0.01 wt.% Ag doped CNT fillers into the GIC powder prior to liquid mixing. Chemical characterization was performed by XRF. While, physical characterization was done by measuring film thickness and initial setting time. The compressive strength, surface microhardness, solubility, and antimicrobial effect against Streptococcus mutans bacteria using an agar diffusion test were measured. The data was statistically analyzed using independent sample t-tests to compare mean values of compressive strength, surface microhardness, solubility, and antimicrobial activity (p ≤ 0.05). RESULTS The results revealed that innovative reinforced GIC with 0.01 wt.% Ag doped CNT fillers showed higher mean compressive strength, surface microhardness, and antimicrobial effect values than the conventional GIC control group; there was no significant difference between different groups in relation to the solubility test (P ≤ 0.05). CONCLUSION The innovatively reinforced GIC with 0.01 wt.% Ag doped CNT fillers had the opportunity to be used as an alternative to conventional GIC dental cements.
Collapse
Affiliation(s)
- Tamer M Hamdy
- Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), Giza, 12622, Dokki, Egypt.
| |
Collapse
|
18
|
Abbassy KM, Elmahy WA, Holiel AA. Evaluation of the proximal contact tightness in class II resin composite restorations using different contact forming instruments: a 1-year randomized controlled clinical trial. BMC Oral Health 2023; 23:729. [PMID: 37805456 PMCID: PMC10559497 DOI: 10.1186/s12903-023-03462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Proper proximal contact in direct composite restorations is crucial for periodontal health. Over a one-year period, this study was conducted to assess successive biological changes in proximal contact tightness PCT in class II direct composite restorations and the adjacent teeth by applying sectional matrix system along with different contact forming instruments. METHODS 72 direct compound class II composite restorations were performed in patients aged 18-40 years and divided into 4 groups: Group I (n = 18): proximal contact was restored with Palodent plus sectional matrix system, Group II (n = 18): Trimax as contact forming instrument, Group III (n = 18): Perform as contact forming instrument and Group IV (n = 18): Contact pro as contact forming instrument. All contact forming instruments were used along with Palodent plus matrix system. PCT was measured using a digital force gauge before (T0), immediate post operative (T1) and at 3 (T2), 6 (T3), 9 (T4), and 12 months (T5) after restorative treatment. Using One-Way ANOVA, Tukey's post hoc test, and Bonferroni correction, PCT values were compared between groups before and after the intervention restoration. Meanwhile, for comparisons within groups, a paired t-test was conducted (p ≤ 0.05). RESULTS Contact forming instruments combined with Palodent plus sectional matrix system achieved better PCT. Trimax led to a statistically considerable tighter proximal contacts than the other groups (p < 0.05). No statistically significant difference was found in PCT between Contact pro-2, Perform and Palodent plus sectional matrix system. By means of multivariate analysis, the PCT between both T0 and T1 were increased (p < 0.001) and then it decreased till T5. CONCLUSIONS The use of transparent contact forming instruments achieved greater PCT compared to Palodent sectional matrix system alone that gradually decreased throughout 12 months and reached the PCT between the natural teeth. Using Trimax system provided the tightest proximal contacts. Additionally, digital force gauge was confirmed as an inclusive and accurate method to quantify PCT. TRIAL REGISTRATION ClinicalTrials.gov NCT05749640: 24/5/2022.
Collapse
Affiliation(s)
- Karim M Abbassy
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Waleed A Elmahy
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
19
|
Alessa NA. Effect of mouthwashes on the microhardness of aesthetic composite restorative materials. An Sist Sanit Navar 2023; 46:e1049. [PMID: 37647204 PMCID: PMC10520749 DOI: 10.23938/assn.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Mouthwashes are increasingly being used worldwide. However, these preparations are known to have a negative impact on composite resin dental restorations. In this study, we aim to evaluate the effect of mouthwashes on the microhardness of such restorations. METHODS Thirty specimens of Tetric N-Ceram composite were prepared. Each composite specimen was cured for 40 seconds and kept in saline solution for 24 hours at 37 °C. Baseline microhardness of each specimen was recorded using an Innovatest Vickers Micro Hardness Tester. Composite specimens were randomly placed in 20 mL of the selected mouthwashes (Colgate® Plax, Listerine® Teeth & Gum Defence, and Closeup® Antibacterial Mouthwash Cool Breeze) and stored in an incubator for 24 hours at 37 °C. Next, microhardness values were rechecked. pH measurements were recorded for each type of mouthwash using a digital pH meter. RESULTS Due to the acidic nature of Colgate® and Listerine®, the microhardness of the restorations decreased with these mouthwashes; Listerine® caused the greatest decrease in microhardness and had the lowest pH reading (4.34). For Closeup®, with a neutral pH (7.02), no negative effect on microhardness was found; on the contrary, due to the presence of zinc in this latter mouthwash, an increase of the microhardness was found. CONCLUSIONS We confirm the negative effect of acidic mouthwashes on the microhardness of composite dental restorations.
Collapse
|
20
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Haider S, De Vera MAT, Alshabib A. Fabrication of Novel Pre-Polymerized BisGMA/Silica Nanocomposites: Physio-Mechanical Considerations. J Funct Biomater 2023; 14:323. [PMID: 37367287 DOI: 10.3390/jfb14060323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Resin composite mimics tooth tissues both in structure and properties, and thus, they can withstand high biting force and the harsh environmental conditions of the mouth. Various inorganic nano- and micro-fillers are commonly used to enhance these composites' properties. In this study, we adopted a novel approach by using pre-polymerized bisphenol A-glycidyl methacrylate (BisGMA) ground particles (XL-BisGMA) as fillers in a BisGMA/triethylene glycol dimethacrylate (TEGDMA) resin system in combination with SiO2 nanoparticles. The BisGMA/TEGDMA/SiO2 mixture was filled with various concentrations of XL-BisGMA (0, 2.5, 5, and 10 wt.%). The XL-BisGMA added composites were evaluated for viscosity, degree of conversion (DC), microhardness, and thermal properties. The results demonstrated that the addition of a lower concentration of XL-BisGMA particles (2.5 wt.%) significantly reduced (p ≤ 0.05) the complex viscosity from 374.6 (Pa·s) to 170.84. (Pa·s). Similarly, DC was also increased significantly (p ≤ 0.05) by the addition of 2.5 wt.% XL-BisGMA, with the pristine composite showing a DC of (62.19 ± 3.2%) increased to (69.10 ± 3.4%). Moreover, the decomposition temperature has been increased from 410 °C for the pristine composite (BT-SB0) to 450 °C for the composite with 10 wt.% of XL-BisGMA (BT-SB10). The microhardness has also been significantly reduced (p ≤ 0.05) from 47.44 HV for the pristine composite (BT-SB0) to 29.91 HV for the composite with 2.5 wt.% of XL-BisGMA (BT-SB2.5). These results suggest that a XL-BisGMA could be used to a certain percentage as a promising filler in combination with inorganic fillers to enhance the DC and flow properties of the corresponding resin-based dental composites.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Leonel S Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | | | - Abdulrahman Alshabib
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
21
|
Jakupović S, Pervan N, Mešić E, Gavranović-Glamoč A, Bajsman A, Muratović E, Kazazić L, Kantardžić-Kovačević A. Assessment of Microhardness of Conventional and Bulk-Fill Resin Composites Using Different Light-Curing Intensity. Polymers (Basel) 2023; 15:polym15102250. [PMID: 37242825 DOI: 10.3390/polym15102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: This study evaluates the effect of a conventional/low-voltage light-curing protocol (LV protocol) (10 s with 1340 mW/cm2) and high-voltage light-curing protocol (HV protocol) (3 s with 3440 mW/cm2) on the microhardness (MH) of dental resin-based composites (RBCs). Five resin composites were tested: conventional Evetric (EVT), Tetric Prime (TP), Tetric Evo Flow (TEF), bulk-fill Tetric Power Fill (PFL), and Tetric Power Flow (PFW). (2) Materials and Methods: Two tested composites (PFW and PFL) were designed for high-intensity light curing. The samples were made in the laboratory in specially designed cylindrical molds; diameter = 6 mm and height = 2 or 4 mm, depending on the type of composite. Initial MH was measured on the top and bottom surfaces of composite specimens 24 h after light curing using a digital microhardness tester (QNESS 60 M EVO, ATM Qness GmbH, Mammelzen, Germany). The correlation between the filler content (wt%, vol%) and the MH of the RBCs was tested. For the calculation of depth-dependent curing effectiveness, the bottom/top ratio for initial MH was used. (3) Conclusions: MH of RBCs is more dependent on material composition than on light-curing protocol. Filler wt% has a greater influence on MH values compared to filler vol%. The bottom/top ratio showed values over 80% for bulk composites, while for conventional sculptable composites, borderline or suboptimal values were measured for both curing protocols.
Collapse
Affiliation(s)
- Selma Jakupović
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry with Clinics, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Nedim Pervan
- Department of Mechanical Design, Faculty of Mechanical Engineering, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elmedin Mešić
- Department of Mechanical Design, Faculty of Mechanical Engineering, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alma Gavranović-Glamoč
- Department of Prosthodontics, Faculty of Dentistry with Clinics, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anita Bajsman
- Department of Dental Morphology with Dental Anthropology and Forensics, Faculty of Dentistry with Clinics, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Enis Muratović
- Department of Mechanical Design, Faculty of Mechanical Engineering, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lejla Kazazić
- Department of Prosthodontics, Faculty of Dentistry with Clinics, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | | |
Collapse
|
22
|
Akiya S, Sato K, Kibe K, Tichy A, Hiraishi N, Prasansuttiporn T, Hosaka K, Foxton RM, Shimada Y, Nakajima M. Polymerization shrinkage of light-cured conventional and bulk-fill composites -The effect of cavity depth and post-curing. Dent Mater J 2023. [PMID: 37032103 DOI: 10.4012/dmj.2022-210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Volumetric shrinkage (VS) of conventional, bulk-fill, and core build-up resin-based composites (RBCs) of various thickness (1-5 mm) was measured using the modified bonded-disk method with confocal laser scanning microscopy. Additionally, the bottom-to-top ratio of Vickers hardness (%VH) was measured. Conventional RBCs exhibited significantly higher VS than bulk-fill and core build-up RBCs (p<0.05). As specimen thickness increased, VS relative to volume (%VS) and difference in VS at each depth (VSdepth) decreased. For conventional RBCs, there was a significant drop in VSdepth between 1 mm and 2 mm (p<0.05), and another drop was observed between 3 mm and 4 mm (p<0.05) where %VH decreased below 90%. For bulk-fill and core build-up RBCs, VSdepth decreased significantly between 2 mm and 3 mm (p<0.05), but %VH exceeded 90% even in 5 mm deep cavities. These results indicated that post-curing contributed to lower shrinkage in deeper layers, and that conventional RBCs were not adequately polymerized at the depth of over 3 mm.
Collapse
Affiliation(s)
- Satoshi Akiya
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Kento Sato
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Kouta Kibe
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Antonin Tichy
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
- Institute of Dental Medicine, First Faculty of Medicine of the Charles University and General University Hospital in Prague
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Taweesak Prasansuttiporn
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University
- Institute of Global Affairs, Tokyo Medical and Dental University
| | - Richard M Foxton
- Institute of Global Affairs, Tokyo Medical and Dental University
- Center for Dental Education, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Masatoshi Nakajima
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
- Department of Regenerative Dental Medicine, Tokushima University
| |
Collapse
|
23
|
Influence of Eugenol and Its Novel Methacrylated Derivative on the Polymerization Degree of Resin-Based Composites. Polymers (Basel) 2023; 15:polym15051124. [PMID: 36904361 PMCID: PMC10007384 DOI: 10.3390/polym15051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The aim of this work was to assess the limiting rate of eugenol (Eg) and eugenyl-glycidyl methacrylate (EgGMA) at which the ideal degree of conversion (DC) of resin composites is achieved. For this, two series of experimental composites, containing, besides reinforcing silica and a photo-initiator system, either EgGMA or Eg molecules at 0-6.8 wt% per resin matrix, principally consisting of urethane dimethacrylate (50 wt% per composite), were prepared and denoted as UGx and UEx, where x refers to the EgGMA or Eg wt% in the composite, respectively. Disc-shaped specimens (5 × 1 mm) were fabricated, photocured for 60 s, and analyzed for their Fourier transform infrared spectra before and after curing. The results revealed concentration-dependent DC, increased from 56.70% (control; UG0 = UE0) to 63.87% and 65.06% for UG3.4 and UE0.4, respectively, then dramatically decreased with the concentration increase. The insufficiency in DC due to EgGMA and Eg incorporation, i.e., DC below the suggested clinical limit (>55%), was observed beyond UG3.4 and UE0.8. The mechanism behind such inhibition is still not fully determined; however, radicals generated by Eg may drive its free radical polymerization inhibitory activity, while the steric hindrance and reactivity of EgGMA express its traced effect at high percentages. Therefore, while Eg is a severe inhibitor for radical polymerization, EgGMA is safer and can be used to benefit resin-based composites when used at a low percentage per resin.
Collapse
|
24
|
Mechanical and Biomimetic Characteristics of Bulk-Fill Resin Dental Composites Following Exposure in a Simulated Acidic Oral Environment. Biomimetics (Basel) 2023; 8:biomimetics8010019. [PMID: 36648805 PMCID: PMC9844310 DOI: 10.3390/biomimetics8010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
During the last 10 years, various companies have marketed different "bulk-fill" resin dental composites for the restoration of posterior stress-bearing teeth; however, the impact of acidic conditions on these relatively newer materials has not been thoroughly investigated. Therefore, an attempt was made to evaluate the effect of acidic beverages on the mechanical biomimetic characteristics of four bulk-fill and one conventional nanohybrid resin-based dental composites (RBCs). The specimens of each RBC were stored in two acidic beverages namely 'Orange Juice' and 'Coca-Cola', whereas 'dry' and 'distilled water' storage of specimens served as controls. After 1 week of storage, flexural and surface hardness properties of specimens were determined using a universal testing machine and Vickers hardness tester, respectively. In general, the 'Coca-Cola' beverage caused the greatest degradation of flexural strength, flexural modulus, and surface hardness characteristics in all RBCs in contrast to the 'dry', 'distilled water' controls and 'Orange Juice' storage conditions. However, the overall mechanical biomimetic performance of nanohybrid RBCs was relatively better than all other bulk-fill RBCs and may, therefore, be considered a suitable candidate for the restoration of posterior stress-bearing permanent dentition.
Collapse
|
25
|
Dunavári E, Berta G, Kiss T, Szalma J, Fráter M, Böddi K, Lempel E. Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites. Int J Mol Sci 2022; 23:ijms232416188. [PMID: 36555828 PMCID: PMC9782750 DOI: 10.3390/ijms232416188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The pre-heating of dental resin-based composites (RBCs) improves adaptability to cavity walls, reducing microleakages. However, the rapid cooling of the pre-heated RBC may change the polymerization kinetics, and thus the final network configuration of the RBC. It is well known that unreacted monomers remaining in the set RBC can leach into the oral cavity. However, it is still not clear how the pre-heating and cooling of RBCs alter monomer elution (ME). Thus, the purpose was to determine the ME from room-temperature and pre-heated RBCs, in addition to determining the closed porosity (CP) volume. Bulk-filled RBCs and layered conventional RBC samples were prepared. The pre-polymerization temperature was set at 24 °C and 55/65 °C. The ME from RBC samples was assessed with high-performance liquid chromatography using standard monomers. CP was measured with micro-computed tomography. ME decreased significantly from bulk fills and increased from layered samples as a result of pre-heating. Pre-heating was unfavorable in terms of CP in most RBCs. Based on the effect size analysis, ME and CP were greatly influenced by both material composition, pre-polymerization temperature, and their interaction. While the pre-heating of high-viscosity bulk-fill RBCs is advantageous from a clinical aspect regarding biocompatibility, it increases CP, which is undesirable from a mechanical point of view.
Collapse
Affiliation(s)
- Erika Dunavári
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - Tamás Kiss
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary
| | - Márk Fráter
- Department of Operative and Esthetic Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos Street 64, 6720 Szeged, Hungary
| | - Katalin Böddi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-7253-9402
| |
Collapse
|
26
|
Yılmaz Atalı P, Doğu Kaya B, Manav Özen A, Tarçın B, Şenol AA, Tüter Bayraktar E, Korkut B, Bilgin Göçmen G, Tağtekin D, Türkmen C. Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites. Polymers (Basel) 2022; 14:polym14224987. [PMID: 36433113 PMCID: PMC9697557 DOI: 10.3390/polym14224987] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Single-shade universal resin composites (SsURC) are preferred in clinical practice to reduce time for shade selection and obtain good esthetic results. In this study, the static mechanical properties of seven new SsURCs were investigated, their spectral analyzes were performed and scanning electron microscopy (SEM) evaluations were presented. Charisma Diamond One/DO, Admira Fusion x-tra/AFX, Omnichroma/OC, OptiShade/OS, Essentia Universal/EU, Zenchroma/ZC, Vittra APS Unique/VU were used in a three-point bending test to determine flexural strength (FS) and elastic modulus (EM); Vickers micro-hardness (VHN) and hardness-ratio (HR) were performed with a micro-hardness tester from top/bottom after 24-h/15-days of storage in distilled water at 37 °C (±1 °C). The degree of conversion (DC) was assessed by using Fourier transform infrared spectroscopy (FTIR). The structure of the resin matrix and filler content were assessed by SEM. Data were analyzed using IBM SPSS V23 and the R program and the significance level was taken as p < 0.05. The main effect of the tested SsURCs was found to be statistically significant on FS, EM, VHN, and DC values (p < 0.001). Bis-GMA free SsURCs (AFX, DO, VU) showed better DC and HR except for OC. All seven tested SsURCs conform to the requirements of ISO standards for dental resin composites for all tested categories.
Collapse
|
27
|
Analysis of the Deflection, Bristle Splaying, and Abrasion of a Single Tuft of a Polybutylene Terephthalate Toothbrush after Use: A Randomized Controlled Trial. MATERIALS 2022; 15:ma15144890. [PMID: 35888356 PMCID: PMC9320165 DOI: 10.3390/ma15144890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022]
Abstract
The aim of this study is to clarify the deflection, splaying, and abrasion of single tufts of polybutylene terephthalate (PBT) toothbrushes after use. A single-center randomized controlled trial is performed. The changes in deflection, bristle splaying, and abrasion are investigated for the middle single tuft of the top line (top–middle tuft) and the middle single tuft of the bottom line (bottom–middle tuft) of PBT toothbrushes with medium stiffness after 1 month, 2 months, and 3 months of use by 34 participants. A soft-material bending-resistance tester is used to assess the deflection of the single tufts. The deflection value of the top–middle tuft significantly increased after 1 month of use compared with the baseline. In contrast, the deflection of the bottom–middle tuft significantly increased after 3 months of use compared with the baseline and after 1 month and 2 months of use. Importantly, the change in deflection was distinctly different between the top– and bottom–middle tufts. The bristle splaying of both tufts significantly increased after use, but a significant change in bristle abrasion was not found. The bending stiffness of the top tuft of a PBT toothbrush may decrease more rapidly than that of the bottom tuft with use.
Collapse
|
28
|
Abouelmagd DM, Basheer RR. Microhardness Evaluation of Microhybrid Versus Nanofilled Resin Composite After Exposure to Acidic Drinks. J Int Soc Prev Community Dent 2022; 12:353-359. [PMID: 35966915 PMCID: PMC9369782 DOI: 10.4103/jispcd.jispcd_66_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/07/2022] Open
Abstract
Objective To investigate the effect of two acidic agents on microhardness of nanofilled and microhybrid resin composite materials. Materials and Methods 70 resin composite discs (10 mm diameter and 2 mm thick) were prepared from 2 resin composites (35 from each type), nanofilled (Z350XT) and microhybrid (Z250), 3M/ESPE. Ten discs (5 from each group) were used as control (tested at 1 h before immersion). Each group was divided into 3 subgroups (n = 10) according to the storage media: distilled water (control), box-type cola and orange juice. Each subgroup was further subdivided into 2 divisions (n = 5) according to microhardness testing at 24 h and 7days after immersions. Digital Vickers Microhardness Tester (FM-7, Future Tech, Tokyo, Japan) was used to measure surface microhardness with a Vickers diamond indenter. The surface of the specimens received a load of 200 g for 10 seconds. Three indentations not less than 1 mm from each other were placed on the surface of all specimens. Vickers hardness number (VHN) was calculated for each indentation Data were statistically analyzed using one- way ANOVA followed by Newman-keuls tests (P ≤ 0.05). Results Orange juice showed statistically significantly the lowest VHN mean value (92.7) followed by the Cola group (95.15) then the water group (104.02) compared to the control group (117.4). Microhybrid composite groups showed statistically significant higher VHN mean value (108.1) than the nanofilled composite (100.2). The 7days groups showed statistically significant lower VHN mean value (97.3) than 24h groups (106.6). Conclusions All storage media reduced hardness of resin composites with orange juice showing the highest reduction in hardness values. Microhybrid is more resistant to degradation than nanofilled composite. Over time, microhardness of resin composites decreased progressively.
Collapse
Affiliation(s)
- Dalia M Abouelmagd
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia and Cairo University, Cairo, Egypt
| | - Rasha R Basheer
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia,Conservative Dentistry Department, October University for Modern Sciences and Arts University, Faculty of Dentistry, Cairo, Egypt,Address for correspondence: Dr. Rasha Ramadan Basheer, Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, PO Box 80209, Jeddah 21589, Saudi Arabia. E-mail:
| |
Collapse
|
29
|
In Vitro Study of Mechanical Properties of Teeth Restored with Bulk-fill and Universal Composites Using Different Dentin Adhesives. JOURNAL OF INTERDISCIPLINARY MEDICINE 2022. [DOI: 10.2478/jim-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background: The most common dental materials are resin composite direct restorative materials and dentin adhesives, which are marketed with different techniques, application recommendations, and compositions, making it difficult to choose the most suitable material and method for different cases.
The present study aimed to investigate mechanical properties of teeth restored with universal and bulk-fill composites, by using different dentin adhesives and techniques, under in vitro conditions.
Material and methods: The study was carried out on freshly extracted premolar and molar teeth. After cavity preparation, the teeth were restored with conventional and bulk-fill resin composites, using different adhesive techniques. To assess the effect of the cavity preparation, the direct restoration, and the adhesive protocol on the tooth structure, a transillumination method and Vickers’ microhardness measurements were carried out.
Results: The universal composite showed an average hardness of 55.35 HV at the occlusal level of the restoration, while the bulk-fill composite showed an average of 79.93 HV at the same level. A statistically significant difference was found between the hardness values of the two composites (p = 0.02). The transillumination test revealed micro-fissures in the tooth structure in the first phase after cavity preparation and also after polymerization.
Conclusions: The bulk-fill composite showed higher hardness values than the universal composite. The tested dentin adhesives did not significantly affect the hardness of the dentin at the level of the adhesive interface. Fissures can appear in any phase of the direct restoration, after cavity preparation and polymerization.
Collapse
|
30
|
Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions. Biomedicines 2022; 10:biomedicines10051008. [PMID: 35625745 PMCID: PMC9138987 DOI: 10.3390/biomedicines10051008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
This in vitro study aimed to assess the erosive effect of hydrochloric acid in association with toothbrushing procedure on the surface condition of three bulk-fill composite resins used for direct restoration. A total of 480 samples (160 from each composite resin): X-tra Fil (VOCO, Germany)—group A, Filtek Bulk-fill Posterior (3M-ESPE, St. Paul, MN, USA)—group B, G-aenial Posterior (GC Japan)—group C were prepared, submitted to chemical attack for 60 min with hydrochloric acid 30% and, subsequently, submitted to the abrasive effect of toothbrushing using 10,000 cycles with medium and hard bristles, at three different times (immediately and after 30 min after acid attack or without any chemical attack). The surface roughness of the samples was measured using a noncontact profilometer (Dektak XT, Bruker, Billerica, MA, USA). The values were analyzed using ANOVA and post hoc Bonferroni tests, with a p < 0.05. Chemical attack for 60 min associated with one year of toothbrushing with toothbrushes having medium or hard bristles increase the surface roughness of tested bulk-fill composite resins. No differences were recorded between toothbrushing with medium or firm bristles immediately or 30 min after acidic challenge for each of the three bulk-fill composite resins. Exposure to hydrochloric acid determines no effect on surface roughness of bulk-fill composite resins.
Collapse
|
31
|
Saati K, Khansari S, Mahdisiar F, Valizadeh S. Evaluation of Microhardness of Two Bulk-fill Composite Resins Compared to a Conventional Composite Resin on surface and in Different Depths. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2022; 23:58-64. [PMID: 35291679 PMCID: PMC8918645 DOI: 10.30476/dentjods.2021.87669.1278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/02/2021] [Accepted: 02/16/2021] [Indexed: 06/14/2023]
Abstract
STATEMENT OF THE PROBLEM One of the problems with light-cured composite resins is the limitation and inadequate depth of curing and polymerization, resulting in low surface microhardness and restoration failure. PURPOSE The present study aimed to compare the surface microhardness of two different bulk-fill composite resins and one conventional composite resin using the Vickers microhardness test. MATERIALS AND METHOD In the present in vitro study, 108 samples from two different bulk-fill composite resins (Tetric N Ceram and Xtrafil) and one conventional composite resin (Filtek Z250) were prepared in metallic molds (2×4×10 mm) (n=36 for each composite resin). Six samples from each composite resin (n=6) underwent a hardness measurement test at specific depths (0.1, 1, 2, 3, 4 and 5mm). The samples were then stored at 37ºC for 24 hours, followed by a microhardness test at the depths mentioned above. RESULTS In all the composite resin samples, microhardness decreased with an increase in depth. The highest microhardness was recorded in Filtek Z250, followed by Xtrafil, with no significant difference. The lowest microhardness was recorded in Tetric N Ceram bulk-fill. Both bulk-fill composite resins at all the depths exhibited depth-to-surface standard microhardness (>80%). CONCLUSION According to the results, both evaluated bulk-fill composite resins exhibited favorable surface microhardness up to a depth of 5 mm.
Collapse
Affiliation(s)
- Keyvan Saati
- Dept. of Restorative Dentistry, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sheida Khansari
- Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Farnaz Mahdisiar
- Dept. of Restorative Dentistry, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sara Valizadeh
- Dental Research Center, Dentistry Research Institute, Dept. of Restorative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Bilgili Can D, Özarslan M. Evaluation of color stability and microhardness of contemporary bulk-fill composite resins with different polymerization properties. J ESTHET RESTOR DENT 2022; 34:924-932. [PMID: 35118802 DOI: 10.1111/jerd.12879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To determine the color stability and microhardness of three bulk-fill composites with different polymerization characteristics, after immersion in four different solutions. MATERIALS AND METHODS Color measurements of three bulk fill (Viscalor (VIS), Tetric PowerFill (TPF), Fill Up! (FUP)) and a microhyrid composite resin (G-aenial posterior [GCP]) were performed after polymerization. The specimens were immersed in coffee, cola, red wine and distilled water. Discolorations were recorded after 24 h (T1), 10 days (T2) and 30 days (T3) of immersion. ΔE (CIEDE2000) values were calculated. Vickers microhardness (VHN) was measured from top and bottom surfaces at T0 and T3. Data was analyzed with Two-way ANOVA, One-way ANOVA and Tukey post hoc tests. RESULTS The highest discoloration was seen in wine and the lowest in distilled water and cola. At T3, there was no difference in distilled water groups, while the statistically highest ΔE00 were obtained in TPF and GCP in coffee, cola and wine. VIS groups had the highest VHN values at T0 and T3 in all solutions. CONCLUSIONS Samples immersed in coffee and wine showed discoloration beyond clinically acceptable limits. After 30 days, discoloration occurred in all materials immersed in all solutions. At T3, VIS microhardness generally decreased, while TPF did not. CLINICAL SIGNIFICANCE After 30 days, all bulk-fill composites immersed in distilled water, coffee and wine showed clinically unacceptable ΔE00 .
Collapse
Affiliation(s)
- Dilber Bilgili Can
- Department of Restorative Dentistry, Faculty of Dentistry, Van Yuzuncu Yil University, Van, Turkey
| | - Merve Özarslan
- Department of Prosthetic Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
33
|
Scribante A, Gallo S, Pascadopoli M, Canzi P, Marconi S, Montasser MA, Bressani D, Gandini P, Sfondrini MF. Properties of CAD/CAM 3D Printing Dental Materials and Their Clinical Applications in Orthodontics: Where Are We Now? APPLIED SCIENCES 2022; 12:551. [DOI: 10.3390/app12020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the last years, both medicine and dentistry have come across a revolution represented by the introduction of more and more digital technologies for both diagnostic and therapeutic purposes. Additive manufacturing is a relatively new technology consisting of a computer-aided design and computer-aided manufacturing (CAD/CAM) workflow, which allows the substitution of many materials with digital data. This process requires three fundamental steps represented by the digitalization of an item through a scanner, the editing of the data acquired using a software, and the manufacturing technology to transform the digital data into a final product, respectively. This narrative review aims to discuss the recent introduction in dentistry of the abovementioned digital workflow. The main advantages and disadvantages of the process will be discussed, along with a brief description of the possible applications on orthodontics.
Collapse
Affiliation(s)
- Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Pietro Canzi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Mona A. Montasser
- Department of Orthodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | | | - Paola Gandini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maria Francesca Sfondrini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
34
|
Colombo M, Gallo S, Chiesa M, Poggio C, Scribante A, Zampetti P, Pietrocola G. In Vitro Weight Loss of Dental Composite Resins and Glass-Ionomer Cements Exposed to a Challenge Simulating the Oral Intake of Acidic Drinks and Foods. JOURNAL OF COMPOSITES SCIENCE 2021; 5:298. [DOI: 10.3390/jcs5110298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Specific conditions of the oral cavity, such as intake of acidic drinks, foods, and drugs, represent a damage both for teeth as well as restorative materials. The aim of this in vitro study is to assess the influence of an acidic challenge on the weight loss of biomimetic restorative dental materials (composite resins and glass-ionomer cements, respectively). Seven products recently available in the marked have been tested in this study for the two kinds of materials, respectively. Resin composites were divided into Groups 1A–7A, whereas glass-ionomer cements into Groups 1B–7B. A total of six samples was considered for each group, among which two were stored into distilled water (control samples) whereas the other four were immersed into soft drink (Coca-Cola, Coca-Cola Company, Milano, Italy) for 7 days. Respectively, after 1, 3 and 7 days, weight was assessed for each sample and the percentage weight loss was calculated. For all the composite resins (Groups 1A–7A), no significant intergroup or intragroup differences occurred for the weight loss values (p > 0.05). Conversely, all glass-ionomers (Groups 1B–7B) showed a significant and progressive weight loss after 1, 3, and 7 days of acid challenge (p < 0.05) (intragroup differences). This reduction was significantly lower in case of GC Equia Forte + Coat and ChemFil Rock, with respect to the other cements (p < 0.05) (intergroup differences). In conclusions, all the biomimetic composite resins showed a reliable behavior when exposed to acidic erosion, whereas glass-ionomers cements generally tended to solubilize. However, the additional use of a protective layer above these latter materials could reduce this event. Despite these results appear to be interesting from a clinical point of view, future morphological evaluations should be conducted to evaluate the superficial changes of the materials after acidic explosion.
Collapse
|
35
|
Gurgan S, Koc Vural U, Miletic I. Comparison of mechanical and optical properties of a newly marketed universal composite resin with contemporary universal composite resins: An in vitro study. Microsc Res Tech 2021; 85:1171-1179. [PMID: 34766666 DOI: 10.1002/jemt.23985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to evaluate the surface roughness, microhardness, color change, and translucency of a newly marketed universal nanohybrid composite resin (CR) (G-aenial A'CHORD) comparing with four contemporary universal CRs including two nanofilled (Filtek and Estelite Asteria) and two nanohybrid CRs (Charisma Dimond and Neo Spectra ST HV in vitro). Sixty-five specimens (8.0 mm × 2.0 mm) were fabricated (n = 13, per group). After finishing and polishing, specimens were subjected to surface roughness and microhardness tests. Color and translucency of the specimens were evaluated at baseline and after darkening with coffee solution at day 1 and day 7. A representative specimen from each group was investigated under scanning electron microscopy (SEM). Data was analyzed statistically (p < .05). There were significant differences among the groups in terms of surface roughness, microhardness, color, and translucency. The surface roughness was recorded as: Charisma Diamond > Neo Spectra ST HV, Filtek > Estelite Asteria, G-aenial A'CHORD, whereas Vickers Hardness number was as: Filtek, Charisma Diamond > Neo Spectra ST HV > G-aenial A'CHORD, Estelite Asteria. Color change was as: Charisma Diamond > Neo Spectra ST HV, Filtek, G-aenial A'CHORD > Estelite Asteria and the translucency was as: Neo Spectra ST HV > G-aenial A'CHORD, Filtek > Estelite Asteria, Charisma Diamond. SEM examinations revealed smooth surfaces for G-aenial A'CHORD, Neo Spectra ST HV and Estelite Asteria. Mechanical and optical properties of universal composite resins with different compositions show variations.
Collapse
Affiliation(s)
- Sevil Gurgan
- Department of Restorative Dentistry, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Uzay Koc Vural
- Department of Restorative Dentistry, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Ivana Miletic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
36
|
Kincses D, Böddi K, Őri Z, Lovász BV, Jeges S, Szalma J, Kunsági-Máté S, Lempel E. Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites. Polymers (Basel) 2021; 13:polym13203599. [PMID: 34685358 PMCID: PMC8538921 DOI: 10.3390/polym13203599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Detection of unreacted monomers from pre-heated resin-based dental composites (RBC) is not a well-investigated topic so far. The objectives were to determine the temperature changes during the application and polymerization, the degree of conversion (DC) and unreacted monomer elution of room temperature (RT), and pre-heated thermoviscous [VisCalor Bulk(VCB)] and high-viscosity full-body contemporary [Filtek One Bulk(FOB)] bulk-fill RBCs. The RBCs' temperatures during the sample preparation were recorded with a K-type thermocouple. The DC at the top and bottom was measured with micro-Raman spectroscopy and the amounts of eluted BisGMA, UDMA, DDMA, and TEGDMA were assessed with High-Performance Liquid Chromatography. The temperatures of the pre-heated RBCs decreased rapidly during the manipulation phase. The temperature rise during photopolymerization reflects the bottom DCs. The differences in DC% between the top and the bottom were significant. RT VCB had a lower DC% compared to FOB. Pre-heating did not influence the DC, except on the bottom surface of FOB where a significant decrease was measured. Pre-heating significantly decreased the elution of BisGMA, UDMA, DDMA in the case of FOB, meanwhile, it had no effect on monomer release from VCB, except TEGDMA, which elution was decreased. In comparison, RBC composition had a stronger influence on DC and monomer elution, than pre-cure temperature.
Collapse
Affiliation(s)
- Dóra Kincses
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary;
| | - Katalin Böddi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary;
| | - Zsuzsanna Őri
- Department of Physical Chemistry and Materials Science, University of Pécs, Ifjúság Street 6, 7624 Pécs, Hungary;
- János Szentágothai Research Center, Ifjúság Street 20, 7624 Pécs, Hungary;
| | - Bálint Viktor Lovász
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary; (B.V.L.); (J.S.)
| | - Sára Jeges
- Faculty of Sciences, University of Pécs, Ifjúság Street 12, 7624 Pécs, Hungary;
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary; (B.V.L.); (J.S.)
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, Ifjúság Street 20, 7624 Pécs, Hungary;
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary;
- Correspondence: ; Tel.: +36-72-535-926
| |
Collapse
|
37
|
Bonding States of In Vitro Class 2 Direct Resin Composite Restoration Applied by Various Incremental Techniques. MATERIALS 2021; 14:ma14206037. [PMID: 34683637 PMCID: PMC8541412 DOI: 10.3390/ma14206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Incremental techniques are always required for clinical cases of deep and/or large cavities restored with resin composite materials. The purpose of this study was to examine the bonding states of class 2 direct resin composite restoration applied by various incremental techniques after cyclic loading to simulate the intra-oral environment to define the appropriate technique. Three types of resin composites, namely, bulk-fill (B), flowable (F), and conventional resin composite (C), were applied to standardized class 2 cavities by incremental techniques with single- or bi-resin restoratives. After cyclic loading, the micro-tensile bond strength (μ-TBS) of the dentin cavity floor was measured. The Weibull modulus and Weibull stress values at 10%/90% probability of failure were analyzed. Single-resin incremental restorations with B or F and bi-resin incremental restorations with F + B and F + C demonstrated superior μ-TBS (quantitative ability), bonding reliability, and durability (qualitative ability) compared with the single-resin restoration with C (as control). Furthermore, F + B and F + C restoration yielded an excellent performance compared with the single-resin restorations with B, F, and C. In particular, the F + C restoration, which indicates not only the maximum mean µ-TBS, but also the highest values of the Weibull parameters, may be the optimal restoration method, including the esthetic benefits.
Collapse
|
38
|
Ardestani SS, Bonan RF, Mota MF, Farias RMDC, Menezes RR, Bonan PRF, Maciel PP, Ramos-Perez FMDM, Batista AUD, da Cruz Perez DE. Effect of the incorporation of silica blow spun nanofibers containing silver nanoparticles (SiO 2/Ag) on the mechanical, physicochemical, and biological properties of a low-viscosity bulk-fill composite resin. Dent Mater 2021; 37:1615-1629. [PMID: 34479726 DOI: 10.1016/j.dental.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This work aimed at producing silica-blow-spun nanofibers containing silver nanoparticles (SiO2/Ag) and investigating the effect of their incorporation in different proportions, with or without pre-treatment with a silane coupling agent, on the mechanical, physicochemical, and biological properties of a commercial composite low-viscosity bulk-fill resin. METHODS The production of SiO2/Ag nanofibers was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). A portion of the produced nanofibers was silanized. Scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and agar diffusion tests against Streptococcus mutans were used to verify the differences between silanized and non-silanized nanofibers. Different proportions (0.5 wt% and 1 wt%) of silanized (SiO2/Ag-0.5S and SiO2/Ag-1S) and non-silanized (SiO2/Ag-0.5NS and SiO2/Ag-1NS) nanofibers were incorporated into the bulk-fill composite (Opus Bulk Fill Flow, FGM). A commercial composite was used as the control. Evaluation of the color parameters (L*, a*, and b*), radiopacity, contact angle, antimicrobial activity, Vickers microhardness, surface roughness (Sa and Sq), flexural strength, and SEM of the fractured surfaces were performed. The data were analyzed using the Mann-Whitney U test (fiber morphology), Kruskal-Wallis tests, with Dunn's post hoc test (antimicrobial activity of the specimen against S. mutans), Student's t-test (disk diffusion), one-way ANOVA and Tukey (color, radiopacity, and contact angle), and two-way ANOVA and Tukey (microhardness, surface roughness, and flexural strength) tests. All statistical analyses were performed at a significance level of 1% (α = 0.01). RESULTS Porous nanometric SiO2/Ag fibers were successfully produced. The silanization process, confirmed by FTIR, increased the diameter and contact angle and reduced the growth inhibition halos of the nanofibers (p < 0.01). After the incorporation of nanofibers into the dental composite, all color parameters were altered in all the experimental groups (p < 0.01). All the groups presented adequate radiopacity values. No statistical difference was observed in the contact angles of the experimental composites (p > 0.01). The lowest microbial counts were obtained in the SiO2/Ag-0.5S group; although no significant difference was observed with the control group (p < 0.01). The SiO2/Ag-1S, SiO2/Ag-0.5S, and SiO2/Ag-0.5NS groups exhibited higher microhardness after 30 d of immersion in water (p < 0.01). The surface roughness (Sa-μm) resembled that of the control at baseline, except for the SiO2/Ag-1NS group. For the baseline evaluation of flexural strength, all the experimental groups exhibited lower values than the control, except for SiO2/Ag-0.5NS and SiO2/Ag-0.5S, but after 30 d of immersion in water, there was no difference (p < 0.01). SIGNIFICANCE The incorporation of 0.5% wt. of silanized nanofibers in the commercial composite (SiO2/Ag-0.5S) seemed to be promising, especially for its greater inhibition of S. mutans, adequate roughness, and flexural strength, in addition to high hardness, even after aging in water.
Collapse
Affiliation(s)
| | - Roberta Ferreti Bonan
- Universidade Federal de Pernambuco, School of Dentistry, Recife, Pernambuco, Brazil; Federal University of Paraiba, Department of Dentistry, João Pessoa, Paraiba, Brazil.
| | - Mariaugusta Ferreira Mota
- Federal University of Campina Grande, Department of Materials Engineering, Campina Grande, Paraiba, Brazil.
| | | | - Romualdo Rodrigues Menezes
- Federal University of Campina Grande, Department of Materials Engineering, Campina Grande, Paraiba, Brazil.
| | | | | | | | | | | |
Collapse
|
39
|
Butera A, Pascadopoli M, Gallo S, Lelli M, Tarterini F, Giglia F, Scribante A. SEM/EDS Evaluation of the Mineral Deposition on a Polymeric Composite Resin of a Toothpaste Containing Biomimetic Zn-Carbonate Hydroxyapatite (microRepair ®) in Oral Environment: A Randomized Clinical Trial. Polymers (Basel) 2021; 13:polym13162740. [PMID: 34451279 PMCID: PMC8398018 DOI: 10.3390/polym13162740] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Toothpastes containing biomimetic hydroxyapatite have been investigated in recent years; the behavior of this material in the oral environment has been evaluated directly on dental enamel showing a marked remineralizing activity. To propose microRepair®-based toothpastes (Zn-carbonate hydroxyapatite) for the domiciliary oral hygiene in patients with dental composite restorations, the aim of this study was to evaluate the deposition of Zn-carbonate hydroxyapatite on a polymeric composite resin with Scanning Electron Microscopy/Energy-Dispersive X-ray Spectrometry (SEM/EDS) analysis. Twenty healthy volunteers underwent the bonding of 3 orthodontic buttons on the vestibular surfaces of upper right premolars and first molar. On the surface of the buttons, a ball-shaped mass of composite resin was applied and light-cured. Then, the volunteers were randomly divided into two groups according to the toothpaste used for domiciliary oral hygiene: the Control toothpaste containing stannous fluoride and the Trial toothpaste containing microRepair®. The buttons were debonded after 7 days (T1—first premolar), after 15 days (T2—second premolar), and after 30 days (T3—first molar) to undergo the SEM/EDS analysis. The deposition of calcium, phosphorus, and silicon was assessed through EDS analysis and data were submitted to statistical analysis (p < 0.05). SEM morphologic evaluation showed a marked deposition of the two toothpastes on the surfaces of the buttons. EDS quantitative analysis showed an increase of calcium, phosphorus, and silicon in both the groups, with a statistically significant difference of calcium deposition at T3 for the Trial group. Therefore, the use of toothpaste containing Zn-carbonate hydroxyapatite could be proposed as a device for domiciliary oral hygiene because the deposition of hydroxyapatite on polymeric composite resin could prevent secondary caries on the margins of restorations.
Collapse
Affiliation(s)
- Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (F.G.)
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (M.P.); (S.G.); (A.S.)
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (M.P.); (S.G.); (A.S.)
| | - Marco Lelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40126 Bologna, Italy; (M.L.); (F.T.)
| | - Fabrizio Tarterini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40126 Bologna, Italy; (M.L.); (F.T.)
| | - Federico Giglia
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (F.G.)
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (M.P.); (S.G.); (A.S.)
| |
Collapse
|
40
|
Influence of Polymeric Restorative Materials on the Stress Distribution in Posterior Fixed Partial Dentures: 3D Finite Element Analysis. Polymers (Basel) 2021; 13:polym13050758. [PMID: 33670991 PMCID: PMC7957672 DOI: 10.3390/polym13050758] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: This study evaluated the effect of interim restorative materials (acrylic resin (AR), resin composite (RC) or polyetheretherketone (PEEK) for dental computer-aided design/computer-aided manufacturing (CAD/CAM)) on the stress distribution of a posterior three-unit fixed partial denture. Methods: The abutment teeth (first molar and first premolar) were modeled using the BioCAD protocol containing 1.5 mm of axial reduction and converging axial walls. A static structural analysis was performed in the computer-aided engineering software, and the Maximum Principal Stress criterion was used to analyze the prosthesis and the cement layers of both abutment teeth. The materials were considered isotropic, linearly elastic, homogeneous and with bonded contacts. An axial load (600 N) was applied to the occlusal surface of the second premolar. Results: Regardless of the restorative material, the region of the prosthetic connectors showed the highest tensile stress magnitude. The highest stress peak was observed with the use of RC (129 MPa) compared to PEEK and AR. For the cement layers, RC showed the lowest values in the occlusal region (7 MPa) and the highest values for the cervical margin (14 MPa) compared to PEEK (21 and 12 MPa) and AR (21 and 13 MPa). Conclusions: Different interim restorative materials for posterior fixed partial dentures present different biomechanical behavior. The use of resin composite can attenuate the stress magnitude on the cement layer, and the use of acrylic resin can attenuate the stress magnitude on the connector region.
Collapse
|
41
|
Scribante A, Gallo S, Scarantino S, Dagna A, Poggio C, Colombo M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics (Basel) 2020; 5:56. [PMID: 33126401 PMCID: PMC7709636 DOI: 10.3390/biomimetics5040056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023] Open
Abstract
Acidic conditions of the oral cavity, including soft drinks and cariogenic bacteria, represent a damage for restorative biomimetic composite materials. The aim of this study is to assess the influence of two different acidic challenges on the flexural strength and elastic modulus of five composites: x-tra fil (Group 1, XTF), GrandioSO x-tra (Group 2, GXT), Admira Fusion x-tra (Group 3, AFX), VisCalor bulk (Group 4, VCB), and Enamel Plus HRi (Group 5, EPH). Thirty samples for each group were randomly divided and assigned to three different treatments: storage in distilled water as the controls (subgroups 1a-5a), 3 weeks distilled water + 1 week Coca-Cola (subgroups 1b-5b), and 4 weeks Coca-Cola (subgroups 1c-5c). For each subgroup, the flexural strength and elastic modulus were measured using an Instron universal testing machine, and data were submitted to statistical analysis. Considering subgroups B, no material showed a significant difference in the flexural strength with the controls (p > 0.05), whereas for subgroups C, only GXT and VCB showed significantly lower values (p < 0.05). AFX reported the lowest flexural strength among the materials tested. As regards the elastic modulus, no material showed a significant variation after acidic storages when compared with the respective control (p > 0.05). AFX and EPH reported the lowest elastic modulus compared to the other materials. All composites tested showed adequate flexural properties according to the standards, except for AFX. This biomimetic material, along with EPH, might be indicated for V class (cervical) restorations considering the lowest values of elasticity reported.
Collapse
Affiliation(s)
- Andrea Scribante
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences—Section of Dentistry, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy; (S.S.); (A.D.); (C.P.); (M.C.)
| | - Simone Gallo
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences—Section of Dentistry, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy; (S.S.); (A.D.); (C.P.); (M.C.)
| | | | | | | | | |
Collapse
|
42
|
Kang SY, Yu JM, Lee JS, Park KS, Lee SY. Evaluation of the Milling Accuracy of Zirconia-Reinforced Lithium Silicate Crowns Fabricated Using the Dental Medical Device System: A Three-Dimensional Analysis. MATERIALS 2020; 13:ma13204680. [PMID: 33096621 PMCID: PMC7589780 DOI: 10.3390/ma13204680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
This study aimed to analyze the milling accuracy of lithium disilicate and zirconia-reinforced silicate crown fabricated using chairside computer-aided design/manufacturing (CAD/CAM) system. Mandibular left first premolar was selected for abutment. A master model was obtained for digital impression using an intraoral scanner, and crowns were designed using a CAD software design program. Amber Mill (AM), IPS e max CAD (IPS), and CELTRA DUO (CEL) were used in the CAD/CAM system, and a total 45 crowns (15 crowns each for AM, IPS, and CEL) was fabricated. Milling accuracy was analyzed with respect to trueness, measured by superimposing CAD design data and scan data through a three-dimensional program to compare the outer and inner surfaces and internal and external parts, thereby acquiring both quantitative and qualitative data. Data were analyzed using the non-parametric test and Kruskal–Wallis H test. In addition, the Mann–Whitney U test was used by applying the level of significance (0.05/3 = 0.016) adjusted by post-analysis Bonferroni correction. All the measured parts of the lithium disilicate and zirconia-reinforced silicate crowns showed statistically significant differences (p < 0.05). The lithium disilicate (AM and IPS) materials showed superior milling accuracy than the zirconia-reinforced lithium silicate (CEL) materials.
Collapse
|
43
|
Kadkhodaei F, Mehran M, Haghgoo R, Zareiyan M. Fracture Resistance of Three Post Types in the Restoration of Anterior Primary Teeth. Open Dent J 2020. [DOI: 10.2174/1874210602014010375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Extensive restorative treatments of anterior primary teeth are challenging in pediatric dentistry.
Objective:
This study aimed to compare the fracture resistance of three post types for restoring the anterior primary teeth.
Methods:
This in-vitro study was carried out on 90 extracted maxillary anterior primary teeth with intact roots. They were randomly allocated into six groups to be restored with conventional composite resin post, X-tra fill composite resin post, Tetric N Ceram composite resin post, prefabricated glass fiber post with conventional composite build-up, prefabricated glass fiber post with X-tra fill composite build-up, and prefabricated glass fiber post with Tetric N Ceram composite build up. The samples were polished and placed in acrylic resin blocks with 1 mm of part of cervical root being out, thermocycled (×5000) and tested for fracture resistance. Intra-class correlation test, Kruskal-Wallis test and one-way ANOVA were used for statistical analyses (α=0.05).
Results:
The mean fracture resistance was significantly different among the six groups. It was the highest in prefabricated glass fiber post with conventional composite build-up (418.64 N), prefabricated glass fiber post with X-tra fill composite build-up (403.63 N) and prefabricated glass fiber post with Tetric N Ceram composite build up (361.63 N); and the lowest in Tetric N Ceram group (280.65 N). The groups were significantly different concerning the fracture strength and fracture state.
Conclusion:
Since the anterior teeth restored with prefabricated glass fiber posts were far more fracture resistant, and prefabricated glass fiber posts can be promisingly used for the restoration of anterior primary teeth.
Collapse
|
44
|
Barreto Girão L, Ohana de Lima Martins J, Lemos JVM, Pinto MR, Rolim JPML, Alves E Silva FCF, Saboia VDPA, Bitu Sousa F, de Barros Silva PG. Influence of the degree of conversion and Bis-GMA residues of bulk fill resins on tissue toxicity in an subcutaneous model in rats. J Appl Biomater Funct Mater 2020; 18:2280800020947330. [PMID: 33151768 DOI: 10.1177/2280800020947330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AIM To analyse the influence of the degree of conversion (DC) and light curing residues of different bulk fills (BFs) composites on the inflammatory profile in the subcutaneous tissue of rats. MATERIALS AND METHODS Resin disks of BF-resins and their active conventional resins (CR; 3M®, Ivoclar®, and Kerr®) were light-cured at 2 mm (BF-superficial) and 4 mm (BF-deep) thicknesses and analyzed by infrared spectroscopy (FTIR; n = 3/group; DC and light curing residues). Then, the disks were implanted in four quadrants in the subcutaneous tissue of Wistar rats (sham, CR, BF-superficial and RF-deep), and after 7, 14, and 28 days, the animals (n = 6/day) were euthanized for histological analysis of the intensity of the inflammatory process (scores 0-3). Kruskal-Wallis/Dunn and ANOVA/Bonferroni tests were used (p < 0.05, Graph Pad Prism 5.0). RESULTS The DC of CR 3M® did not differ significantly compared to BF-superficial and BF-deep resins (p = 0.235). The Ivoclar® and Kerr® resins showed a higher DC with CR and BF-superficial compared to the BF-deep (p = 0.005 and p = 0.011, rctively). Kerr® resins showed a higher Bis-GMA/UDMA ratio, especially in BF-deep resin (p < 0.05). 3M® and Ivoclar resins did not show high inflammation scores, but for Kerr® BF resins (superficial and deep), the inflammatory process was significantly higher than that in the CR and sham quadrants (p = 0.031). CONCLUSION The tissue inflammatory response after resin inoculation depends on the DC and light curing residues of Bis-GMA.
Collapse
Affiliation(s)
| | - Joyce Ohana de Lima Martins
- Department of Dentistry, Unichristus, Fortaleza, Ceará, Brazil.,Department of Clinic Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | |
Collapse
|