1
|
Adjustment of Micro- and Macroporosity of ß-TCP Scaffolds Using Solid-Stabilized Foams as Bone Replacement. Bioengineering (Basel) 2023; 10:bioengineering10020256. [PMID: 36829750 PMCID: PMC9952018 DOI: 10.3390/bioengineering10020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
To enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 µm) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 µm), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 μm with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.
Collapse
|
2
|
Kim C, Lee JW, Heo JH, Park C, Kim DH, Yi GS, Kang HC, Jung HS, Shin H, Lee JH. Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration. Biomater Res 2022; 26:7. [PMID: 35216625 PMCID: PMC8876184 DOI: 10.1186/s40824-022-00253-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Background A considerable number of studies has been carried out to develop alloplastic bone graft materials such as hydroxyapatite (HAP) that mimic the hierarchical structure of natural bones with multiple levels of pores: macro-, micro-, and nanopores. Although nanopores are known to play many essential roles in natural bones, only a few studies have focused on HAPs containing them; none of those studies investigated the functions of nanopores in biological systems. Method We developed a simple yet powerful method to introduce nanopores into alloplastic HAP bone graft materials in large quantities by simply pressing HAP nanoparticles and sintering them at a low temperature. Results The size of nanopores in HAP scaffolds can be controlled between 16.5 and 30.2 nm by changing the sintering temperature. When nanopores with a size of ~ 30.2 nm, similar to that of nanopores in natural bones, are introduced into HAP scaffolds, the mechanical strength and cell proliferation and differentiation rates are significantly increased. The developed HAP scaffolds containing nanopores (SNPs) are biocompatible, with negligible erythema and inflammatory reactions. In addition, they enhance the bone regeneration when are implanted into a rabbit model. Furthermore, the bone regeneration efficiency of the HAP-based SNP is better than that of a commercially available bone graft material. Conclusion Nanopores of HAP scaffolds are very important for improving the bone regeneration efficiency and may be one of the key factors to consider in designing highly efficient next-generation alloplastic bone graft materials. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00253-x.
Collapse
Affiliation(s)
- Chansong Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Cheolhyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyu Sung Yi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ho Chang Kang
- Probiomimetic Research Institute, Bundang Technopark, Seongnam, 13219, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at Sungkyunkwan University, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Biggemann J, Stumpf M, Fey T. Porous Alumina Ceramics with Multimodal Pore Size Distributions. MATERIALS 2021; 14:ma14123294. [PMID: 34198712 PMCID: PMC8232101 DOI: 10.3390/ma14123294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Pore networks with multimodal pore size distributions combining advantages from isotropic and anisotropic shaped pores of different sizes are highly attractive to optimize the physical properties of porous ceramics. Multimodal porous Al2O3 ceramics were manufactured using pyrolyzed cellulose fibers (l = 150 µm, d = 8 µm) and two types of isotropic phenolic resin spheres (d = 30 and 300 µm) as sacrificial templates. The sacrificial templates were homogeneously distributed in the Al2O3 matrix, compacted by uniaxial pressing and extracted by a burnout and sintering process up to 1700 °C in air. The amount of sacrificial templates was varied up to a volume content of 67 Vol% to form pore networks with porosities of 0-60 Vol%. The mechanical and thermal properties were measured by 4-point-bending and laser flash analysis (LFA) resulting in bending strengths of 173 MPa to 14 MPa and heat conductivities of 22.5 Wm-1K-1 to 4.6 Wm-1K-1. Based on µCT-measurements, the representative volume-of-interest (VOI) of the samples digital twin was determined for further analysis. The interconnectivity, tortuosity, permeability, the local and global stress distribution as well as strut and cell size distribution were evaluated on the digital twin's VOI. Based on the experimental and simulation results, the samples pore network can be tailored by changing the fiber to sphere ratio and the overall sacrificial template volume. The presence pore formers significantly influenced the mechanical and thermal properties, resulting in higher strengths for samples containing fibrous templates and lower heat conductivities for samples containing spherical templates.
Collapse
Affiliation(s)
- Jonas Biggemann
- Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (J.B.); (M.S.)
| | - Martin Stumpf
- Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (J.B.); (M.S.)
| | - Tobias Fey
- Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (J.B.); (M.S.)
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Correspondence: ; Tel.: +49-9131-8527-546
| |
Collapse
|
4
|
McNamara SL, McCarthy EM, Schmidt DF, Johnston SP, Kaplan DL. Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites. Biomaterials 2021; 269:120643. [PMID: 33434713 DOI: 10.1016/j.biomaterials.2020.120643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/28/2023]
Abstract
Traditional bone fixation devices made from inert metal alloys provide structural strength for bone repair but are limited in their ability to actively promote bone healing. Although several naturally derived bioactive materials have been developed to promote ossification in bone defects, it is difficult to translate small-scale benchtop fabrication of these materials to high-output manufacturing. Standard industrial molding processes, such as injection and compression molding, have typically been limited to use with synthetic polymers since most biopolymers cannot withstand the harsh processing conditions involved in these techniques. Here we demonstrate injection and compression molding of a bioceramic composite comprised of hydroxyapatite (HA) and silk fibroin (SF) from Bombyx mori silkworm cocoons. Both the molding behavior of the HA-SF slurry and final scaffold mechanics can be controlled by modulating SF protein molecular weight, SF content, and powder-to-liquid ratio. HA-SF composites with up to 20 weight percent SF were successfully molded into stable three-dimensional structures using high pressure molding techniques. The unique durability of silk fibroin enables application of common molding techniques to fabricate composite silk-ceramic scaffolds. This work demonstrates the potential to move bone tissue engineering one step closer to large-scale manufacturing of natural protein-based resorbable bone grafts and fixation devices.
Collapse
Affiliation(s)
- Stephanie L McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Ethan M McCarthy
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Daniel F Schmidt
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Stephen P Johnston
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
5
|
Biggemann J, Müller P, Köllner D, Simon S, Hoffmann P, Heik P, Lee JH, Fey T. Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. J Funct Biomater 2020; 11:jfb11040073. [PMID: 33023048 PMCID: PMC7712268 DOI: 10.3390/jfb11040073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
The tailored manipulation of ceramic surfaces gained recent interest to optimize the performance and lifetime of composite materials used as implants. In this work, a hierarchical surface texturing of hydroxyapatite (HAp) ceramics was developed to improve the poor adhesive bonding strength in hydroxyapatite and polycaprolactone (HAp/PCL) composites. Four different types of periodic surface morphologies (grooves, cylindric pits, linear waves and Gaussian hills) were realized by a ceramic micro-transfer molding technique in the submillimeter range. A subsequent surface roughening and functionalization on a micron to nanometer scale was obtained by two different etchings with hydrochloric and tartaric acid. An ensuing silane coupling with 3-aminopropyltriethoxysilane (APTES) enhanced the chemical adhesion between the HAp surface and PCL on the nanometer scale by the formation of dipole-dipole interactions and covalent bonds. The adhesive bonding strengths of the individual and combined surface texturings were investigated by performing single-lap compressive shear tests. All individual texturing types (macro, micro and nano) showed significantly improved HAp/PCL interface strengths compared to the non-textured HAp reference, based on an enhanced mechanical, physical and chemical adhesion. The independent effect mechanisms allow the deliberately hierarchical combination of all texturing types without negative influences. The hierarchical surface-textured HAp showed a 6.5 times higher adhesive bonding strength (7.7 ± 1.5 MPa) than the non-textured reference, proving that surface texturing is an attractive method to optimize the component adhesion in composites for potential medical implants.
Collapse
Affiliation(s)
- Jonas Biggemann
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
- Correspondence: (J.B.); (T.F.); Tel.: +49-9131-8527561 (J.B.); +49-9131-8527546 (T.F.)
| | - Philipp Müller
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - David Köllner
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Swantje Simon
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Patrizia Hoffmann
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Paula Heik
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16149, Korea;
| | - Tobias Fey
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Correspondence: (J.B.); (T.F.); Tel.: +49-9131-8527561 (J.B.); +49-9131-8527546 (T.F.)
| |
Collapse
|