1
|
Zu W, Carranza HE, Bartlett MD. Enhancing Electrical Conductivity of Stretchable Liquid Metal-Silver Composites through Direct Ink Writing. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38685822 PMCID: PMC11082841 DOI: 10.1021/acsami.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Structure-property-process relationships are a controlling factor in the performance of materials. This offers opportunities in emerging areas, such as stretchable conductors, to control process conditions during printing to enhance performance. Herein, by systematically tuning direct ink write (DIW) process parameters, the electrical conductivity of multiphase liquid metal (LM)-silver stretchable conductors is increased by a maximum of 400% to over 1.06 × 106 S·m-1. This is achieved by modulating the DIW print velocity, which enables the in situ elongation, coalescence, and percolation of these multiphase inclusions during printing. These DIW printed filaments are conductive as fabricated and are soft (modulus as low as 1.1 MPa), stretchable (strain limit >800%), and show strain invariant conductivity up to 80% strain. These capabilities are demonstrated through a set of electromagnetic induction coils that can transfer power wirelessly through air and water, even under deformation. This work provides a methodology to program properties in stretchable conductors, where the combination of material composition and process parameters leads to greatly enhanced performance. This approach can find use in applications such as soft robots, soft electronics, and printed materials for deformable, yet highly functional devices.
Collapse
Affiliation(s)
- Wuzhou Zu
- Mechanical
Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hugo E. Carranza
- Mechanical
Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Bartlett
- Mechanical
Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Jiang C, Sheng B. Linear Capacitive Pressure Sensor with Gradient Architecture through Laser Ablation on MWCNT/Ecoflex Film. Polymers (Basel) 2024; 16:962. [PMID: 38611220 PMCID: PMC11013779 DOI: 10.3390/polym16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The practical application of flexible pressure sensors, including electronic skins, wearable devices, human-machine interaction, etc., has attracted widespread attention. However, the linear response range of pressure sensors remains an issue. Ecoflex, as a silicone rubber, is a common material for flexible pressure sensors. Herein, we have innovatively designed and fabricated a pressure sensor with a gradient micro-cone architecture generated by CO2 laser ablation of MWCNT/Ecoflex dielectric layer film. In cooperation with the gradient micro-cone architecture and a dielectric layer of MWCNT/Ecoflex with a variable high dielectric constant under pressure, the pressure sensor exhibits linearity (R2 = 0.990) within the pressure range of 0-60 kPa, boasting a sensitivity of 0.75 kPa-1. Secondly, the sensor exhibits a rapid response time of 95 ms, a recovery time of 129 ms, hysteresis of 6.6%, and stability over 500 cycles. Moreover, the sensor effectively exhibited comprehensive detection of physiological signals, airflow detection, and Morse code communication, thereby demonstrating the potential for various applications.
Collapse
Affiliation(s)
- Chenkai Jiang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
3
|
Oh J, Nam KW, Kim WJ, Kang BH, Park SH. Flexible Dry Electrode Based on a Wrinkled Surface That Uses Carbon Nanotube/Polymer Composites for Recording Electroencephalograms. MATERIALS (BASEL, SWITZERLAND) 2024; 17:668. [PMID: 38591516 PMCID: PMC10856397 DOI: 10.3390/ma17030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 04/10/2024]
Abstract
Electroencephalography (EEG) captures minute electrical signals emanating from the brain. These signals are vulnerable to interference from external noise and dynamic artifacts; hence, accurately recording such signals is challenging. Although dry electrodes are convenient, their signals are of limited quality; consequently, wet electrodes are predominantly used in EEG. Therefore, developing dry electrodes for accurately and stably recording EEG signals is crucial. In this study, we developed flexible dry electrodes using polydimethylsiloxane (PDMS)/carbon-nanotube (CNT) composites with isotropically wrinkled surfaces that effectively combine the advantages of wet and dry electrodes. Adjusting the PDMS crosslinker ratio led to good adhesion, resulting in a highly adhesive CNT/PDMS composite with a low Young's modulus that exhibited excellent electrical and mechanical properties owing to its ability to conformally contact skin. The isotropically wrinkled surface also effectively controls dynamic artifacts during EEG signal detection and ensures accurate signal analysis. The results of this study demonstrate that dry electrodes based on flexible CNT/PDMS composites and corrugated structures can outperform wet electrodes. The introduction of such electrodes is expected to enable the accurate analysis and monitoring of EEG signals in various scenarios, including clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Sung-Hoon Park
- Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (J.O.); (K.-W.N.); (W.-J.K.); (B.-H.K.)
| |
Collapse
|
4
|
Kim WJ, Nam KW, Kang BH, Park SH. Piezoresistive Effect of Conductive and Non-Conductive Fillers in Bi-Layer Hybrid CNT Composites under Extreme Strain. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6335. [PMID: 37763613 PMCID: PMC10534893 DOI: 10.3390/ma16186335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Polymers mixed with conductive fillers hold significant potential for use in stretchable and wearable sensor devices. Enhancing the piezoresistive effect and mechanical stability is critical for these devices. To explore the changes in the electrical resistance under high strains, typically unachievable in single-layer composites, bi-layer structures were fabricated from carbon nanotubes (CNTs) and EcoFlex composites to see unobservable strain regions. Spherical types of non-conductive fillers composed of polystyrene and conductive filler, coated with Ni and Au on non-conductive fillers, were used as secondary fillers to improve the piezoresistive sensitivity of composites, and their respective impact on the conductive network was compared. The electrical and mechanical properties were examined in the static state to understand the impact of these secondary fillers. The changes in the electrical resistance under 100% and 300% tensile strain, and their dependence on the inherent electrical properties of the secondary fillers, were also investigated. Single-layer CNT composites proved incapable of withstanding 300% strain, whereas the bi-layer structures proved resilient. By implementing cyclic stretching tests, contrary to non-conductive fillers, reduced piezoresistive influence of the conductive secondary filler under extreme strain conditions could be observed.
Collapse
Affiliation(s)
| | | | | | - Sung-Hoon Park
- Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (W.-J.K.); (K.-W.N.); (B.-H.K.)
| |
Collapse
|
5
|
Mu Q, Hu T, Tian X, Li T, Kuang X. The Effect of Filler Dimensionality and Content on Resistive Viscoelasticity of Conductive Polymer Composites for Soft Strain Sensors. Polymers (Basel) 2023; 15:3379. [PMID: 37631438 PMCID: PMC10458475 DOI: 10.3390/polym15163379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Soft strain sensors based on conductive polymer composites (CPCs) provide a simple and feasible detection tool in wearable electronics, soft machines, electronic skin, etc. However, the CPCs-based soft strain sensors exhibit resistive viscoelasticity (or time-dependent properties) that hinder the intuitive reflection of the accurate strain and a simple calibration process. In this paper, CPCs with different carbon nanotubes (CNTs) and carbon black (CB) contents were prepared, and electro-mechanical experiments were conducted to study the effect of filler dimensionality and content on the resistive viscoelasticity of CPCs, aimed at guiding the fabrication of CPCs with low resistive viscoelasticity. Furthermore, resistive viscoelasticity and mechanical viscoelasticity were compared to study the origin of the resistive viscoelasticity of CPCs. We found that, at the vicinity of their percolation threshold, the CPCs exhibit high resistive viscoelasticity despite their high sensitivity. In addition, the secondary peaks for CB/SR composite were negligible when the CB concentration was low. Generally, compared with one-dimensional CNT-filled CPCs, the zero-dimensional CB-filled CPCs show higher sensitivity, lower resistive hysteresis, lower resistance relaxation ratio, and better cyclic performance, so they are more suitable for sensor usage. By comparing the resistive viscoelasticity and mechanical viscoelasticity of CPCs, it is indicated that, when the concentration of nanoparticles (NPs) approaches the percolation thresholds, the resistive viscoelasticity is mainly derived from the change of conductive network, while when the concentration of NPs is higher, it is primarily due to the unrecoverable deformations inside the material.
Collapse
Affiliation(s)
- Quanyi Mu
- School of Physics, Ningxia University, Yinchuan 750021, China; (T.H.); (X.T.); (T.L.)
- Ningxia Key Laboratory of Intelligent Sensing for Desert Information, Ningxia University, Yinchuan 750021, China
| | - Ting Hu
- School of Physics, Ningxia University, Yinchuan 750021, China; (T.H.); (X.T.); (T.L.)
| | - Xinya Tian
- School of Physics, Ningxia University, Yinchuan 750021, China; (T.H.); (X.T.); (T.L.)
| | - Tongchuan Li
- School of Physics, Ningxia University, Yinchuan 750021, China; (T.H.); (X.T.); (T.L.)
| | - Xiao Kuang
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Oh J, Kim DY, Kim H, Hur ON, Park SH. Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7637. [PMID: 36363228 PMCID: PMC9657234 DOI: 10.3390/ma15217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Conducting polymer composites consisting of carbon nanotubes (CNTs) as a conductive filler and polydimethylsiloxane (PDMS) as a polymer matrix were fabricated to investigate their capacitive and piezoresistive effects as pressure sensors. The pressure-sensing behavior and mechanism of the composites were compared in terms of basic configuration with a parallel plate structure. Various sensing experiments, such as sensitivity, repeatability, hysteresis, and temperature dependence according to the working principle, were conducted with varying filler contents. The hysteresis and repeatability of the pressure-sensing properties were investigated using cyclic tensile tests. In addition, a temperature test was performed at selected temperatures to monitor the change in the resistance/capacitance.
Collapse
|
7
|
Cassa MA, Maselli M, Zoso A, Chiono V, Fracchia L, Ceresa C, Ciardelli G, Cianchetti M, Carmagnola I. Development of an Innovative Soft Piezoresistive Biomaterial Based on the Interconnection of Elastomeric PDMS Networks and Electrically-Conductive PEDOT:PSS Sponges. J Funct Biomater 2022; 13:135. [PMID: 36135570 PMCID: PMC9500767 DOI: 10.3390/jfb13030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023] Open
Abstract
A deeply interconnected flexible transducer of polydimethylsiloxane (PDMS) and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) was obtained as a material for the application of soft robotics. Firstly, transducers were developed by crosslinking PEDOT:PSS with 3-glycidyloxypropryl-trimethoxysilane (GPTMS) (1, 2 and 3% v/v) and using freeze-drying to obtain porous sponges. The PEDOT:PSS sponges were morphologically characterized, showing porosities mainly between 200 and 600 µm2; such surface area dimensions tend to decrease with increasing degrees of crosslinking. A stability test confirmed a good endurance for up to 28 days for the higher concentrations of the crosslinker tested. Consecutively, the sponges were electromechanically characterized, showing a repeatable and linear resistance variation by the pressure triggers within the limits of their working range (∆RR0 max = 80% for 1-2% v/v of GPTMS). The sponges containing 1% v/v of GPTMS were intertwined with a silicon elastomer to increase their elasticity and water stability. The flexible transducer obtained with this method exhibited moderately lower sensibility and repeatability than the PEDOT:PSS sponges, but the piezoresistive response remained stable under mechanical compression. Furthermore, the transducer displayed a linear behavior when stressed within the limits of its working range. Therefore, it is still valid for pressure sensing and contact detection applications. Lastly, the flexible transducer was submitted to preliminary biological tests that indicate a potential for safe, in vivo sensing applications.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
| | - Martina Maselli
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
- Institute for Chemical and Physical Processes (CNR-IPCF), National Research Council, 56124 Pisa, Italy
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
- Institute for Chemical and Physical Processes (CNR-IPCF), National Research Council, 56124 Pisa, Italy
| | - Matteo Cianchetti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
| |
Collapse
|
8
|
Design of a Smart Conducting Nanocomposite with an Extended Strain Sensing Range by Conjugating Hybrid Structures. Polymers (Basel) 2022; 14:polym14132551. [PMID: 35808597 PMCID: PMC9268829 DOI: 10.3390/polym14132551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, flexible and wearable strain sensors, consisting of a polymer matrix and a conducting filler, have received extensive attention owing to their physical advantages, such as being lightweight, stretchable, and having the potential for application to complex forms. However, achieving a low hysteresis of the relative change in resistance, wide sensing range, and reduced plastic deformation is still challenging. To address these issues, in this study, we developed hybrid conducting composites with a wide range of sensing abilities and low hysteresis. The bi-layer composites, comprising a carbon nanotube (CNT) composite layer with reinforced/conducting properties, and a natural rubber-based layer with extreme strain properties, could effectively circumvent their limitations. Compared to single-layer CNT composites, the bi-layer structure could increase the tensile strain with reduced plastic deformation, resulting in the prevention of surface cracks on the CNT composite. In addition, it has the benefit of measuring a wider sensing range, which cannot be measured in a single-CNT composite system. A cyclic stretching/releasing test was performed to demonstrate that the strain sensor exhibited excellent reproducibility. Our results can function as a useful design guide for stretchable sensor applications.
Collapse
|
9
|
Lee DK, Yoo J, Kim H, Kang BH, Park SH. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. MATERIALS 2022; 15:ma15041356. [PMID: 35207898 PMCID: PMC8874980 DOI: 10.3390/ma15041356] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
In response to the rising need for flexible and lightweight materials capable of efficient heat transport, many studies have been conducted to improve the thermal properties of polymers via nanofillers. Among the various nanofillers, carbon nanotubes (CNTs) are considered as the most promising, owing to their excellent thermal and electrical properties. Accordingly, CNT/polymer composites can be used as flexible and lightweight heat transfer materials, owing to their low density. In this study, we fabricated multi-walled CNT (MWCNT)/polymer composites with different aspect ratios to investigate their effects on electrical and thermal properties. Through a three-roll milling process, CNTs were uniformly dispersed in the polymer matrix to form a conductive network. Enhanced electrical and thermal properties were observed in MWCNT composite with a high aspect ratio as compared to those with a low aspect ratio. The thermal conductivity of composites obtained as a function of the filler content was also compared with the results of a theoretical prediction model.
Collapse
|
10
|
Yoo J, Kim DY, Kim H, Hur ON, Park SH. Comparison of Pressure Sensing Properties of Carbon Nanotubes and Carbon Black Polymer Composites. MATERIALS 2022; 15:ma15031213. [PMID: 35161157 PMCID: PMC8838471 DOI: 10.3390/ma15031213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022]
Abstract
Polymer composites containing conductive fillers that utilize the piezoresistive effect can be employed in flexible pressure sensors. Depending on the filler used, different characteristics of a pressure sensor such as repeatability, sensitivity, and hysteresis can be determined. To confirm the variation of the pressure sensing tendency in accordance with the dimensions of the filler, carbon black (CB) and carbon nanotubes (CNTs) were used as representative 0-dimension and 1-dimension conductive fillers, respectively. The piezoresistive effect was exploited to analyze the process of resistance change according to pressure using CB/PDMS (polydimethylsiloxane) and CNT/PDMS composites. The electrical characteristics observed for each filler were confirmed to be in accordance with its content. The pressure sensitivity of each composite was optimized, and the pressure-sensing mechanism that explains the difference in sensitivity is presented. Through repeated compression experiments, the hysteresis and repeatability of the pressure-sensing properties were examined.
Collapse
|
11
|
Du Z, Chen J, Liu C, Jin C, Han M. Controllable Fabrication of Percolative Metal Nanoparticle Arrays Applied for Quantum Conductance-Based Strain Sensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13214838. [PMID: 33137978 PMCID: PMC7662695 DOI: 10.3390/ma13214838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
We use gas phase deposition of well-defined nanoparticles (NPs) to fabricate closely-spaced Pd NP arrays on flexible membranes prepatterned with interdigital electrodes (IDEs). The evolution of the morphology and electron conductance of the NP arrays during deposition is analyzed. The growth of two-dimensional percolation clusters of interconnected NPs, which correlate with the percolation pathway for electron conduction in the NP deposits, is demonstrated. The percolative nature of the NP arrays permits us to finely control the percolation geometries and conductance of the NP film by controlling the NP deposition time so as to realize a precise and reproducible fabrication of sensing materials. Electron transport measurements reveal that the electrical conductance of the NP films is dominated by electron tunneling or hopping across the NP percolating networks. Based on the percolative and quantum tunneling nature, the closely-spaced Pd NP films on PET membranes are used as flexible strain sensors. The sensor demonstrates an excellent response ability to distinguish tiny deformations down to 5×10-4 strain and a high sensitivity with a large gauge factor of 200 up to 4% applied strain.
Collapse
Affiliation(s)
| | | | | | | | - Min Han
- Correspondence: ; Tel.: +86-25-83686248
| |
Collapse
|
12
|
Bending Properties of Carbon Nanotube/Polymer Composites with Various Aspect Ratios and Filler Contents. MICROMACHINES 2020; 11:mi11090857. [PMID: 32957456 PMCID: PMC7569917 DOI: 10.3390/mi11090857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
The key characteristics of bending sensors are piezoresistive effect, hysteresis, and durability. In this study, to investigate the influence of the aspect ratio and contents of multi-walled nanotubes (MWNTs) on the properties of bending sensors, MWNT/polydimethylsiloxane (PDMS) composites were fabricated with various aspect ratios and filler contents. The MWNTs were uniformly dispersed in the composites using the three-roll milling method. By increasing the bending angle gradually, the sensitivity of each composite was analyzed. Furthermore, discontinuous cyclic bending tests were conducted to investigate the piezoresistive effect and hysteresis. In addition, stable repeatability of the composites was confirmed through continuous cyclic bending tests. As a result, optimal aspect ratios and filler contents have been presented for application in bending sensors of MWNT composites.
Collapse
|