1
|
Lopez-Astacio H, Vargas-Perez BL, Del Valle-Perez A, Pollock CJ, Cunci L. Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:322-327. [PMID: 38306299 PMCID: PMC10914171 DOI: 10.1107/s1600577524000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.
Collapse
Affiliation(s)
- Hiram Lopez-Astacio
- Department of Chemistry and Physics, Universidad Ana G. Mendez at Gurabo, Gurabo, Puerto Rico, USA
| | - Brenda Lee Vargas-Perez
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Angelica Del Valle-Perez
- Department of Chemistry and Physics, Universidad Ana G. Mendez at Gurabo, Gurabo, Puerto Rico, USA
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Christopher J. Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| |
Collapse
|
2
|
Tian Q, Wang W, Cao L, Tian X, Tian G, Chen M, Ma L, Liu X, Yuan Z, Cheng C, Guo Q. Multifaceted Catalytic ROS-Scavenging via Electronic Modulated Metal Oxides for Regulating Stem Cell Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207275. [PMID: 36082539 DOI: 10.1002/adma.202207275] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Developing reactive oxygen species (ROS)-scavenging nanostructures to protect and regulate stem cells has emerged as an intriguing strategy for promoting tissue regeneration, especially in trauma microenvironments or refractory wounds. Here, an electronic modulated metal oxide is developed via Mn atom substitutions in Co3 O4 nanocrystalline (Mn-Co3 O4 ) for highly efficient and multifaceted catalytic ROS-scavenging to reverse the fates of mesenchymal stem cells (MSCs) in oxidative-stress microenvironments. Benefiting from the atomic Mn-substitution and charge transfer from Mn to Co, the Co site in Mn-Co3 O4 displays an increased ratio of Co2+ /Co3+ and improved redox properties, thus enhancing its intrinsic and broad-spectrum catalytic ROS-scavenging activities, which surpasses most of the currently reported metal oxides. Consequently, the Mn-Co3 O4 can efficiently protect the MSCs from ROS attack and rescue their functions, including adhesion, spreading, proliferation, and osteogenic differentiation. This work not only establishes an efficient material for catalytic ROS-scavenging in stem-cell-based therapeutics but also provides a new avenue to design biocatalytic metal oxides via modulation of electronic structure.
Collapse
Affiliation(s)
- Qinyu Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, 100853, China
| | - Weiwen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lijian Cao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinggui Tian
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, 100853, China
| | - Mingxue Chen
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, 100853, China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, 100853, China
| |
Collapse
|
3
|
Investigation of the stability of the Boron-Doped Diamond support for Co3O4-based oxygen evolution reaction catalysts synthesized through in situ autocombustion method. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Synthesis of Cobalt Oxide on FTO by Hydrothermal Method for Photoelectrochemical Water Splitting Application. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cobalt oxide thin films were successfully grown directly on fluorine-doped tin oxide glass substrates through a simple, green, and low-cost hydrothermal method. An investigation into the physicochemical characteristics and photoelectrochemical (PEC) properties of the developed cobalt oxide thin film was comprehensively performed. At various annealing temperatures, different morphologies and crystal phases of cobalt oxide were observed. Microflowers (Co3O4) and microflowers with nanowire petals (Co3O4/CoO) were produced at 450 °C and 550 °C, respectively. Evaluation of the PEC performance of the samples in KOH (pH 13), Na2SO4 (pH 6.7), and H2SO4 (pH 1) revealed that the highest photocurrent −2.3 mA cm−2 generated at −0.5 V vs. reversible hydrogen electrode (RHE) was produced by Co3O4 (450 °C) in H2SO4 (pH 1). This photocurrent corresponded to an 8-fold enhancement compared with that achieved in neutral and basic electrolytes and was higher than the results reported by other studies. This promising photocurrent generation was due to the abundant source of protons, which was favorable for the hydrogen evolution reaction (HER) in H2SO4 (pH 1). The present study showed that Co3O4 is photoactive under acidic conditions, which is encouraging for HER compared with the mixed-phase Co3O4/CoO.
Collapse
|