Squeo BM, Ganzer L, Virgili T, Pasini M. BODIPY-Based Molecules, a Platform for Photonic and Solar Cells.
Molecules 2020;
26:E153. [PMID:
33396319 PMCID:
PMC7794854 DOI:
10.3390/molecules26010153]
[Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting material for optoelectronic applications. The facile structural modification of BODIPY core provides an opportunity to fine-tune its photophysical and optoelectronic properties thanks to the presence of eight reactive sites which allows for the developing of a large number of functionalized derivatives for various applications. This review will focus on BODIPY application as solid-state active material in solar cells and in photonic devices. It has been divided into two sections dedicated to the two different applications. This review provides a concise and precise description of the experimental results, their interpretation as well as the conclusions that can be drawn. The main current research outcomes are summarized to guide the readers towards the full exploitation of the use of this material in optoelectronic applications.
Collapse