1
|
Matsuura H, Okamura N, Nagaoka M, Suzuki N, Kodama S, Maeda T, Yagi S. Synthesis, Photoluminescence, and Electroluminescence of Phosphorescent Dipyrido[3,2- a;2'3'- c]phenazine-Platinum(II) Complexes Bearing Hole-Transporting Acetylide Ligands. Molecules 2024; 29:3849. [PMID: 39202928 PMCID: PMC11356835 DOI: 10.3390/molecules29163849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In this study, novel phosphorescent dipyrido[3,2-a;2'3'-c]phenazine (dppz)-platinum(II)-phenylacetylide complexes were developed to fabricate non-doped organic light-emitting diodes (OLED) by solution-processing. To facilitate the charge carrier injection into the emitting layer (EML), 3,6-di-tert-butylcarbazole-functinalized phenylacetylides were employed. As for the dppz ligand, 9,9-dihexylfluoren-2-yl and 4-hexylthiophen-2-yl side-arms were introduced to the 2,7-positions, which led to reddish orange and red photoluminescence (PL), respectively, in solution and film states (PL wavelength: ca. 600 and ca. 625 nm, respectively). The carbazole-appended phenylacetylide ligands hardly affected the emission color, although unsubstituted phenylacetylides gave rise to aggregate- or excimer-based near-infrared PL with a low quantum yield. Two types of non-doped OLEDs were fabricated: single-layer and multilayer devices. In both devices, the organic layers were fabricated by spin-coating, and the EML consisted of a neat film of the corresponding platinum(II) complex. Therein, electroluminescence spectra corresponding to those of PL were observed. The single-layer devices exhibited low device efficiencies due to a deteriorated charge carrier balance. The multilayer devices possessed hole- and electron-transporting layers on the anode and cathode sides of the EML, respectively. Owing to an improved charge carrier balance, the multilayer devices exhibited higher device performance, affording considerably improved values of luminance and external quantum efficiency.
Collapse
Affiliation(s)
- Hiroki Matsuura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (N.O.); (N.S.); (S.K.); (T.M.)
| | - Naoki Okamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (N.O.); (N.S.); (S.K.); (T.M.)
| | - Masaki Nagaoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan;
| | - Naoya Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (N.O.); (N.S.); (S.K.); (T.M.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan;
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (N.O.); (N.S.); (S.K.); (T.M.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan;
| | - Takeshi Maeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (N.O.); (N.S.); (S.K.); (T.M.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan;
| | - Shigeyuki Yagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (N.O.); (N.S.); (S.K.); (T.M.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan;
| |
Collapse
|
2
|
Kawabata K, Takimiya K. Quinoid-Aromatic Resonance for Very Small Optical Energy Gaps in Small-Molecule Organic Semiconductors: A Naphthodithiophenedione-oligothiophene Triad System. Chemistry 2021; 27:15660-15670. [PMID: 34529287 DOI: 10.1002/chem.202102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Organic semiconductors with very small optical energy gaps have attracted a lot of attention for near-infrared-active optoelectronic applications. Herein, we present a series of donor-acceptor-donor (D-A-D) organic semiconductors consisting of a highly electron-deficient naphtho[1,2-b:5,6-b']dithiophene-2,7-dione quinoidal acceptor and oligothiophene donors that show very small optical energy gaps of down to 0.72 eV in the solid state. Investigation of the physicochemical properties of the D-A-D molecules as well as theoretical calculations of their electronic structures revealed an efficient intramolecular interaction between the quinoidal acceptor and the aromatic oligothiophene donors in the D-A-D molecules; this significantly enhances the backbone resonance and thus reduces the bond length alternation along the π-conjugated backbones. Despite the very small optical energy gaps, the D-A-D molecules have low-lying frontier orbital energy levels that give rise to air-stable ambipolar carrier transport properties with hole and electron mobilities of up to 0.026 and 0.043 cm2 V-1 s-1 , respectively, in field-effect transistors.
Collapse
Affiliation(s)
- Kohsuke Kawabata
- Department of Chemistry Graduate School of Science, Tohoku University Aoba-ku, Sendai, Miyagi, 9808578, Japan.,Center for Emergent Matter Science, RIKEN Wako, Saitama, 3510198, Japan
| | - Kazuo Takimiya
- Department of Chemistry Graduate School of Science, Tohoku University Aoba-ku, Sendai, Miyagi, 9808578, Japan.,Center for Emergent Matter Science, RIKEN Wako, Saitama, 3510198, Japan.,Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 9808577, Japan
| |
Collapse
|
3
|
Mok Y, Kim Y, Moon Y, Park JJ, Choi Y, Kim DY. Quinoidal Small Molecule Containing Ring-Extended Termini for Organic Field-Effect Transistors. ACS OMEGA 2021; 6:27305-27314. [PMID: 34693151 PMCID: PMC8529684 DOI: 10.1021/acsomega.1c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In this work, we synthesized and characterized two quinoidal small molecules based on benzothiophene modified and original isatin terminal units, benzothiophene quinoidal thiophene (BzTQuT) and quinoidal thiophene (QuT), respectively, to investigate the effect of introducing a fused ring into the termini of quinoidal molecules. Extending the terminal unit of the quinoidal molecule affected the extension of π-electron delocalization and decreased the bond length alternation, which led to the downshifting of the collective Raman band and dramatically lowering the band gap. Organic field-effect transistor (OFET) devices in neat BzTQuT films showed p-type transport behavior with low hole mobility, which was ascribed to the unsuitable film morphology for charge transport. By blending with an amorphous insulating polymer, polystyrene, and poly(2-vinylnaphthalene), an OFET based on a BzTQuT film annealed at 150 °C exhibited improved mobility up to 0.09 cm2 V-1 s-1. This work successfully demonstrated that the extension of terminal groups into the quinoidal structure should be an effective strategy for constructing narrow band gap and high charge transporting organic semiconductors.
Collapse
Affiliation(s)
| | | | - Yina Moon
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jong-Jin Park
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yeonsu Choi
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Bujaldón R, Puigdollers J, Velasco D. Towards the Bisbenzothienocarbazole Core: A Route of Sulfurated Carbazole Derivatives with Assorted Optoelectronic Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3487. [PMID: 34201516 PMCID: PMC8269540 DOI: 10.3390/ma14133487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Ladder-type molecules, which possess an extended aromatic backbone, are particularly sought within the optoelectronic field. In view of the potential of the 14H-bis[1]benzothieno[3,2-b:2',3'-h]carbazole core as a p-type semiconductor, herein we studied a set of two derivatives featuring a different alkylation patterning. The followed synthetic route, involving various sulfurated carbazole-based molecules, also resulted in a source of fluorophores with different emitting behaviors. Surprisingly, the sulfoxide-containing fluorophores substantially increased their blue fluorescence with respect to the nearly non-emitting sulfur counterparts. On this basis, we could shed light on the relationship between their chemical structure and their emission as an approach for future applications. Considering the performance in organic thin-film transistors, both bisbenzothienocarbazole derivatives displayed p-type characteristics, with hole mobility values up to 1.1 × 10-3 cm2 V-1 s-1 and considerable air stability. Moreover, the role of the structural design has been correlated with the device performance by means of X-ray analysis and the elucidation of the corresponding single crystal structures.
Collapse
Affiliation(s)
- Roger Bujaldón
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona, Spain;
| | - Joaquim Puigdollers
- Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, E-08034 Barcelona, Spain;
| | - Dolores Velasco
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona, Spain;
| |
Collapse
|