1
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Sushma SM, Tejaswini C, Roopini K, Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024; 90:102497. [PMID: 39059131 DOI: 10.1016/j.tice.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Collagen is a multipurpose material that has several applications in the health care, dental care, and pharmaceutical industries. Crosslinked compacted solids or lattice-like gels can be made from collagen. Biocompatibility, biodegradability, and wound-healing properties make collagen a popular scaffold material for cardiovascular, dentistry, and bone tissue engineering. Due to its essential role in the control of several of these processes, collagen has been employed as a wound-healing adjunct. It forms a major component of the extracellular matrix and regulates wound healing in its fibrillar or soluble forms. Collagen supports cardiovascular and other soft tissues. Oral wounds have been dressed with resorbable forms of collagen for closure of graft and extraction sites, and to aid healing. This present review is concentrated on the use of collagen in bone regeneration, wound healing, cardiovascular tissue engineering, and dentistry.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Subhas Madinoor Sushma
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Chandrashekar Tejaswini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Karunakaran Roopini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Somashekara Rajashekara
- Department of Studies in Zoology, Centre for Applied Genetics, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka 560056, India.
| |
Collapse
|
2
|
Yang X, Gu P, Jiang Q, Cheng X, Fan J, Bai Y. Instant and Multifunctional Nanofibers Loaded with Proanthocyanidins and Hyaluronic Acid for Skincare Applications. Biomedicines 2024; 12:1584. [PMID: 39062159 PMCID: PMC11274950 DOI: 10.3390/biomedicines12071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronic-acid- and silk-fibroin-based nanofibrous mats loaded with proanthocyanidins and collagen peptides were fabricated as multifunctional facial masks using electrospinning. Their morphology, hygroscopicity and moisture retention, DPPH, ABTS free radical scavenging abilities, and cytocompatibility were investigated. The results showed that the nanofibrous mats were dense and uniform, with an average diameter ranging from 300 to 370 nm. The nanofibrous mats exhibited satisfactory moisture retention, oxidation resistance, biocompatibility, especially excellent DPPH, and ABTS free radical scavenging capacities. DPPH free radical scavenging activity was 90% with 15 mg/L nanofibers, and ABTS free radical scavenging activity was 90% with 0.005 mg/L nanofibers. The nanofibrous mats protected fibroblasts from oxidative stress damage induced by tert-butyl hydroperoxide (t-BHP) and significantly promoted their proliferation. Compared with traditional liquid masks and semi-solid facial masks, the multifunctional nanofibrous mats prepared in this study contained fewer additives, which has significant advantages in terms of safety. The nanofibrous mats were rapidly dissolved within 5 s after being sprayed with water, which facilitated the release and penetration of active ingredients for skincare. Therefore, the multifunctional nanofibrous mats displayed excellent moisture retention, oxidation resistance, and biocompatibility, indicating promising translational potential as facial masks and providing a valuable reference for skincare.
Collapse
Affiliation(s)
- Xuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Y.); (Q.J.); (X.C.); (J.F.)
| | - Pengcheng Gu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China;
| | - Qiang Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Y.); (Q.J.); (X.C.); (J.F.)
| | - Xiting Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Y.); (Q.J.); (X.C.); (J.F.)
| | - Jia Fan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Y.); (Q.J.); (X.C.); (J.F.)
| | - Yan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Y.); (Q.J.); (X.C.); (J.F.)
| |
Collapse
|
3
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
4
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
5
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
6
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
7
|
Senthil R. Silk fibroin sponge impregnated with fish bone collagen: A promising wound healing scaffold and skin tissue regeneration. Int J Artif Organs 2024; 47:338-346. [PMID: 38693724 DOI: 10.1177/03913988241249296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In the present study, porous silk fibroin sponges (SFS) were prepared using silk fibroin (SF), fish bone collagen (FBC), and olive oil (OO). The study investigates the potential use of using this sponge as skin tissue regeneration. The sponge was characterized for its physicochemical, mechanical, antimicrobial, and drug release properties. An in vitro study was carried out using human keratinocyte cell line (HaCaT). Biodegradation study using enzymatic method was carried out. The results showed that the mechanical properties such as tensile strength (23.40 ± 0.05 MPa), elongation at break (14.25 ± 0.02%), and water absorption (30.23 ± 0.01%) of the SFS were excellent, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays proved the biocompatible nature of the SFS. The SFS exhibited outstanding antibacterial properties against E. coli (4.72 ± 0.05 mm) and S. aureus (4.98 ± 0.07 mm). The developed SFS promote a promising solution for skin tissue regeneration and wound dressing.
Collapse
Affiliation(s)
- Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Selvaraj V, Sekaran S, Dhanasekaran A, Warrier S. Type 1 collagen: Synthesis, structure and key functions in bone mineralization. Differentiation 2024; 136:100757. [PMID: 38437764 DOI: 10.1016/j.diff.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.
Collapse
Affiliation(s)
- Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | | | - Sudha Warrier
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| |
Collapse
|
9
|
Shao H, Wu X, Xiao Y, Yang Y, Ma J, Zhou Y, Chen W, Qin S, Yang J, Wang R, Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol 2024; 261:129752. [PMID: 38280705 DOI: 10.1016/j.ijbiomac.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Yanyu Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Wen Chen
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Shaoxia Qin
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Jiawei Yang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China.
| |
Collapse
|
10
|
Koczoń P, Dąbrowska A, Laskowska E, Łabuz M, Maj K, Masztakowski J, Bartyzel BJ, Bryś A, Bryś J, Gruczyńska-Sękowska E. Applications of Silk Fibroin in Human and Veterinary Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7128. [PMID: 38005058 PMCID: PMC10672237 DOI: 10.3390/ma16227128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The properties of silk make it a promising material for medical applications, both in human and veterinary medicine. Its predominant amino acids, glycine and alanine, exhibit low chemical reactivity, reducing the risk of graft rejection, a notable advantage over most synthetic polymers. Hence, silk is increasingly used as a material for 3D printing in biomedicine. It can be used to build cell scaffolding with the desired cytocompatibility and biodegradability. In combination with gelatine, silk can be used in the treatment of arthritis, and as a hydrogel, to regenerate chondrocytes and mesenchymal cells. When combined with gelatine and collagen, it can also make skin grafts and regenerate the integumentary system. In the treatment of bone tissue, it can be used in combination with polylactic acid and hydroxyapatite to produce bone clips having good mechanical properties and high immunological tolerance. Furthermore, silk can provide a good microenvironment for the proliferation of bone marrow stem cells. Moreover, research is underway to produce artificial blood vessels using silk in combination with glycidyl methacrylate. Silk vascular grafts have demonstrated a high degree of patency and a satisfactory degree of endothelial cells coverage.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| | - Alicja Dąbrowska
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Ewa Laskowska
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Małgorzata Łabuz
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Katarzyna Maj
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Jakub Masztakowski
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Andrzej Bryś
- Department of Fundamental Engineering and Energetics, Institute of Mechanical Engineering, Warsaw University of Life Sciences, 164, Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| |
Collapse
|
11
|
Shopova D, Mihaylova A, Yaneva A, Bakova D. Advancing Dentistry through Bioprinting: Personalization of Oral Tissues. J Funct Biomater 2023; 14:530. [PMID: 37888196 PMCID: PMC10607235 DOI: 10.3390/jfb14100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| |
Collapse
|
12
|
Cai Y, Fu X, Zhou Y, Lei L, Wang J, Zeng W, Yang Z. A hydrogel system for drug loading toward the synergistic application of reductive/heat-sensitive drugs. J Control Release 2023; 362:409-424. [PMID: 37666303 DOI: 10.1016/j.jconrel.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The preparation of hydrogels as drug carriers via radical-mediated polymerization has significant prospects, but the strong oxidizing ability of radicals and the high temperatures generated by the vigorous reactions limits the loading for reducing/heat-sensitive drugs. Herein, an applicable hydrogel synthesized by radical-mediated polymerization is reported for the loading and synergistic application of specific drugs. First, the desired sol is obtained by polymerizing functional monomers using a radical initiator, and then tannic-acid-assisted specific drug mediates sol-branched phenylboric acid group to form the required functional hydrogel (New-gel). Compared with the conventional single-step radical-mediated drug-loading hydrogel, the New-gel not only has better chemical/physical properties but also efficiently loads and releases drugs and maintains drug activity. Particularly, the New-gel has excellent loading capacity for oxygen, and exhibits significant practical therapeutic effects for diabetic wound repair. Furthermore, owing to its high light transmittance, the New-gel synergistically promotes the antibacterial effect of photosensitive drugs. This gelation strategy for loading drugs has further promising biomedical applications.
Collapse
Affiliation(s)
- Yucen Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoxue Fu
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yingjuan Zhou
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Lei
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiajia Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
13
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5459. [PMID: 37570163 PMCID: PMC10419642 DOI: 10.3390/ma16155459] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
Collapse
Affiliation(s)
- Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Zhao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Li Gan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510030, China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| |
Collapse
|
15
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
16
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Fadilah NIM, Ahmat N, Hao LQ, Maarof M, Rajab NF, Idrus RBH, Fauzi MB. Biological Safety Assessments of High-Purified Ovine Collagen Type I Biomatrix for Future Therapeutic Product: International Organisation for Standardisation (ISO) and Good Laboratory Practice (GLP) Settings. Polymers (Basel) 2023; 15:polym15112436. [PMID: 37299233 DOI: 10.3390/polym15112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Wound care management is incredibly challenging for chronic injuries, despite the availability of various types of wound care products in the market. However, most current wound-healing products do not attempt to mimic the extracellular matrix (ECM) and simply provide a barrier function or wound covering. Collagen is a natural polymer that involves a major constituent of the ECM protein, thus making it attractive to be used in skin tissue regeneration during wound healing. This study aimed to validate the biological safety assessments of ovine tendon collagen type-I (OTC-I) in the accredited laboratory under ISO and GLP settings. It is important to ensure that the biomatrix will not stimulate the immune system to produce any adverse reaction. Therefore, we successfully extracted collagen type-I from the ovine tendon (OTC- I) using a method of low-concentration acetic acid. The three-dimensional (3D) skin patch of spongy OTC-I was a soft and white colour, being tested for safety and biocompatibility evaluations based on ISO 10993-5, ISO 10993-10, ISO 10993-11, ISO 10993-23, USP 40 <151>, and OECD 471. For the dermal sensitisation and acute irritation test, none of the tested animals displayed any erythema or oedema effects (p > 0.005). In addition, there were no abnormalities detected in the organ of the mice after being exposed to OTC-I; additionally, no morbidity and mortality were observed in the acute systemic test under the guideline of ISO 10993-11:2017. The grade 0 (non-reactive) based on ISO 10993-5:2009 was graded for the OTC-I at 100% concentration and the mean number of the revertant colonies did not exceed 2-fold of the 0.9% w/v sodium chloride compared to the tester strains of S. typhimurium (TA100, TA1535, TA98, TA1537), and E. coli (WP2 trp uvrA). Our study revealed that OTC-I biomatrix does not present any adverse effects or abnormalities in the present study's condition of induced skin sensitization effect, mutagenic and cytotoxic towards cells and animals. This biocompatibility assessment demonstrated a good agreement between in vitro and in vivo results regarding the absence of skin irritation and sensitization potential. Therefore, OTC-I biomatrix is a potential medical device candidate for future clinical trials focusing on wound care management.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nazeha Ahmat
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur 50300, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Hamza KH, El-Shanshory AA, Agwa MM, Abo-Alkasem MI, El-Fakharany EM, Abdelsattar AS, El-Bardan AA, Kassem TS, Mo X, Soliman HMA. Topically Applied Biopolymer-Based Tri-Layered Hierarchically Structured Nanofibrous Scaffold with a Self-Pumping Effect for Accelerated Full-Thickness Wound Healing in a Rat Model. Pharmaceutics 2023; 15:pharmaceutics15051518. [PMID: 37242760 DOI: 10.3390/pharmaceutics15051518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-β1 (TGF-β1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.
Collapse
Affiliation(s)
- Kholoud H Hamza
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed I Abo-Alkasem
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Ali A El-Bardan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Taher S Kassem
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt
| |
Collapse
|
19
|
Gao D, Chen H, Li H, Yang X, Guo X, Zhang Y, Ma J, Yang J, Ma S. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L. Front Nutr 2023; 10:1149137. [PMID: 37025610 PMCID: PMC10070700 DOI: 10.3389/fnut.2023.1149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
Collapse
Affiliation(s)
- Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuhua Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xingchen Guo
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yuxuan Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jinpu Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Shuwen Ma
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
20
|
Gao LL, Wei Y, Tan YS, Li RX, Zhang CQ, Gao H. Irrigating degradation properties of silk fibroin-collagen type II composite cartilage scaffold in vitro and in vivo. BIOMATERIALS ADVANCES 2023; 149:213389. [PMID: 36965402 DOI: 10.1016/j.bioadv.2023.213389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Silk fibroin-collagen type II scaffolds are promising in cartilage tissue engineering due to their suitable biological functionality to promote proliferation of chondrocytes in vitro. However, their degradation properties, which are of crucial importance as scaffold degradation should consistent with the new tissue formation process, are still unknown. In this study, degradability of silk fibroin-collagen type II cartilage scaffolds was probed both in vitro and in vivo. In vitro degradation experiments show that the scaffolds decreased 32.25 % ± 0.62 %, 34.27 % ± 0.96 %, 36.27 % ± 2.39 % in weight after 8 weeks of degradation at the irrigation velocity of 0 mL/min, 7.89 mL/min and 15.79 mL/min. The degradation ratio, which increases with time and increasing irrigation velocity, is described by combining the built mathematic model and finite element modeling method. The scaffolds after 8 weeks of degradation in vitro keep their mechanical structural integrity to support new tissues. In vivo degradation experiments conducted in rabbits further show that the scaffolds degrade gradually, be absorbed with time and finally collapse in structure. The degradation process is accompanied by the growth of fibrous tissues and the scaffold is filled by fibrous tissues after 12 weeks of implantation. Immunohistology analysis shows that the inflammation caused by scaffolds is controllable and gradually alleviates with time. To sum up, silk fibroin-collagen type II cartilage scaffolds, which show suitable mechanical properties and biocompatibility during degradation in vitro and in vivo, have great potential in cartilage repair. The novelty of the study is that it not only introduces a mathematical model to predict the irrigation degradation ratio, but also provides experimental degradation data support for clinical application of silk fibroin-collagen type II cartilage scaffolds.
Collapse
Affiliation(s)
- Li-Lan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ying Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yan-Song Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China.
| | - Rui-Xin Li
- Tianjin Stomatological Hospital, Tianjin, China.
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
22
|
Xu P, Huang W, Yang J, Fu X, Jing W, Zhou Y, Cai Y, Yang Z. Copper-rich multifunctional Prussian blue nanozymes for infected wound healing. Int J Biol Macromol 2023; 227:1258-1270. [PMID: 36464186 DOI: 10.1016/j.ijbiomac.2022.11.320] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The healing process of infected wounds was limited by bacterial infection, excessive reactive oxygen species (ROS) accumulation, and tissue hypoxia. In order to alleviate the above situations, herein, a copper-rich multifunctional ultra-small Prussian blue nanozymes (HPP@Cu NZs) was constructed for infected wound synergistic treatment. Firstly, hyaluronic acid was modified by branched polyethyleneimine which could form a complex with copper ions, to construct copper-rich Prussian blue nanozymes. Secondly, the HPP@Cu NZs have a uniform ultra-small nano size and excellent photothermal response performance, exhibition of multifunctional enzymatic activity and anti-inflammatory properties. Finally, the slow release of copper ions in the HPP@Cu NZs could effectively promote the formation of new blood vessels, thus giving it multifunctional properties. In vitro and in vivo experiments showed that it not only could effectively inhibit and kill bacteria under 808 nm near-infrared laser but also could remove excessive ROS, regulate oxygen levels, and anti-inflammation. More importantly, the release of copper ions could synergistically promote the healing of infected wounds as well as good biocompatibility. Overall, our studies provide a multifunctional strategy for infected wounds with synergistic treatment based on carrier construction.
Collapse
Affiliation(s)
- Ping Xu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenyan Huang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiaxin Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoxue Fu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Weihong Jing
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingjuan Zhou
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yucen Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
23
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
24
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
26
|
Lukhey MS, Shende P. Advancement in wound healing treatment using functional nanocarriers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2099393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mihir S. Lukhey
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| |
Collapse
|
27
|
Kandhasamy S, Zeng Y. Fabrication of vitamin K3-carnosine peptide-loaded spun silk fibroin fibers/collagen bi-layered architecture for bronchopleural fistula tissue repair and regeneration applications. BIOMATERIALS ADVANCES 2022; 137:212817. [PMID: 35929255 DOI: 10.1016/j.bioadv.2022.212817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Bronchial and pleural injuries with persistent air leak pose a threat in the repair and regeneration of pulmonary diseases. The need to arrive at a highly efficient therapy for closure of bronchopleural fistula (BPF) so as to effectively suppress inflammation, infection and repair the damaged pleural space caused by cancer as well as contractile restoration of bronchopleural scars remain a significant clinical challenge. Herein, we have designed and developed potent bioactive vitamin K3 carnosine peptide (VKC)-loaded spun SF fibroin fibers/collagen bi-layered 3D scaffold for bronchopleural fistula tissue engineering applications. The VKC drug showed excellent cell viability in human bronchial epithelial cells (HBECs), in addition to its pronounced higher cytotoxicity against the A549 lung cancer cell line with an IC50 of 5 μg/mL. Furthermore, VKC displayed a strong affinity with the catalytic site of EGFR (PDB ID: 1M17) and VEGFR2 (PDB ID: 4AGD, 4ASD) receptors in molecular docking studies. Following which the spun SF-VKC (primary layer) and collagen film (top layer) constructed bi-layered CSVKC were structurally elucidated and its morphological, physicochemical and biological characterizations were well examined. The bi-layered scaffold showed superior biocompatibility and cell migration ability in HBECs than other scaffolds. Interestingly, the CSVKC revealed rapid HBECs motility towards scratched regions for fast healing in vitro bronchial tissue engineering. In vivo biocompatibility and angiogenesis studies of the prepared scaffolds were evaluated and the results obtained demonstrated excellent new tissue formation and neovascularization in the bi-layered architecture rather than others. Therefore, our results suggest that the potent antibacterial and anticancer therapeutic agent (VKC)-impregnated silk fibroin fibers/collagen bi-layered 3D biomaterial could be useful in treating cancerous BPF and pulmonary diseases in future.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
28
|
Tuwalska A, Grabska-Zielińska S, Sionkowska A. Chitosan/Silk Fibroin Materials for Biomedical Applications-A Review. Polymers (Basel) 2022; 14:polym14071343. [PMID: 35406217 PMCID: PMC9003105 DOI: 10.3390/polym14071343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
This review provides a report on recent advances in the field of chitosan (CTS) and silk fibroin (SF) biopolymer blends as new biomaterials. Chitosan and silk fibroin are widely used to obtain biomaterials. However, the materials based on the blends of these two biopolymers have not been summarized in a review paper yet. As these materials can attract both academic and industrial attention, we propose this review paper to showcase the latest achievements in this area. In this review, the latest literature regarding the preparation and properties of chitosan and silk fibroin and their blends has been reviewed.
Collapse
Affiliation(s)
- Anna Tuwalska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
- Correspondence:
| |
Collapse
|
29
|
Magnetic field-assisted aligned patterning in an alginate-silk fibroin/nanocellulose composite for guided wound healing. Carbohydr Polym 2022; 287:119321. [DOI: 10.1016/j.carbpol.2022.119321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
30
|
Ojima K, Kushibiki T, Mayumi Y, Miyai K, Shinchi M, Hirano Y, Azuma R, Ito K, Ishihara M, Horiguchi A. Ability of photocurable gelatin to prevent stricture recurrence after urethral dilation in rabbits. Int J Urol 2022; 29:170-175. [PMID: 34664326 DOI: 10.1111/iju.14730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate the ability of photocurable gelatin to prevent stricture recurrence after urethral dilation in a rabbit urethral stricture model. METHODS We created urethral strictures in the bulbar urethras of 10 male Japanese white rabbits using electrocoagulation. After 1 month, the rabbits were randomly divided into Group A (n = 5; urethral stricture dilation and the local application of photocurable gelatin using a ruthenium photoinitiator and irradiation with a light-emitting diode light [λ = 455 nm, 50 mW/cm2 ] for 1 min) and Group B (n = 5; dilation only). Urethral stricture status was evaluated 1-2 months later by retrograde urethrography and urethroscopy. The lumen ratio (urethral width at the stricture site to the normal urethral width on retrograde urethrography) was calculated. Urethral patency was considered to be improved when the urethral lumen could accommodate a 10-Fr urethroscope without resistance. Urethral specimens were harvested for histopathological examination. RESULTS The mean lumen ratio did not differ significantly between Groups A and B before dilation (25.8% vs 23.4%; P = 0.40), but differed significantly after dilation (65.5% vs 27.3%, respectively; P = 0.03). Urethral patency improved in all rabbits in Group A (100%) versus one rabbit in Group B (20%; P = 0.02). The mean circumference of the regenerated urethral epithelium at the stricture site was larger in Group A than in Group B (14 mm vs 6.6 mm; P = 0.06). CONCLUSIONS Photocurable gelatin can reduce urethral stricture recurrence after dilation in a rabbit model.
Collapse
Affiliation(s)
- Kenichiro Ojima
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Masayuki Shinchi
- Department of Urology, Nishisaitama-chuo National Hospital, Saitama, Japan
| | - Yusuke Hirano
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, Saitama, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
31
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
32
|
Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. MEMBRANES 2021; 11:770. [PMID: 34677536 PMCID: PMC8537333 DOI: 10.3390/membranes11100770] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
With the increasing demand for wound care and treatment worldwide, traditional dressings have been unable to meet the needs of the existing market due to their limited antibacterial properties and other defects. Electrospinning technology has attracted more and more researchers' attention as a simple and versatile manufacturing method. The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing. This article first discusses the common types of wound dressing, and then summarizes the development of electrospun fiber preparation technology. Finally, the polymers and common biologically active substances used in electrospinning wound dressings are summarized, and portable electrospinning equipment is also discussed. Additionally, future research needs are put forward.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Mingxin Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
33
|
Naomi R, Ridzuan PM, Bahari H. Current Insights into Collagen Type I. Polymers (Basel) 2021; 13:2642. [PMID: 34451183 PMCID: PMC8399689 DOI: 10.3390/polym13162642] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen type I (Col-I) is unique due to its high biocompatibility in human tissue. Despite its availability from various sources, Col-I naturally mimics the extracellular matrix (ECM) and generally makes up the larger protein component (90%) in vasculature, skin, tendon bone, and other tissue. The acceptable physicochemical properties of native Col-I further enhance the incorporation of Col-I in various fields, including pharmaceutical, cosmeceutical, regenerative medicine, and clinical. This review aims to discuss Col-I, covering the structure, various sources of availability, native collagen synthesis, current extraction methods, physicochemical characteristics, applications in various fields, and biomarkers. The review is intended to provide specific information on Col-I currently available, going back five years. This is expected to provide a helping hand for researchers who are concerned about any development on collagen-based products particularly for therapeutic fields.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
34
|
Naomi R, Bahari H, Ridzuan PM, Othman F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers (Basel) 2021; 13:2319. [PMID: 34301076 PMCID: PMC8309321 DOI: 10.3390/polym13142319] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Collagen (Col) and gelatin are most extensively used in various fields, particularly in pharmaceuticals and therapeutics. Numerous researchers have proven that they are highly biocompatible to human tissues, exhibit low antigenicity and are easy to degrade. Despite their different sources both Col and gelatin have almost the same effects when it comes to wound healing mechanisms. Considering this, the bioactivity and biological effects of both Col and gelatin have been, and are being, constantly investigated through in vitro and in vivo assays to obtain maximum outcomes in the future. With regard to their proven nutritional values as sources of protein, Col and gelatin products exert various possible biological activities on cells in the extracellular matrix (ECM). In addition, a vast number of novel Col and gelatin applications have been discovered. This review compared Col and gelatin in terms of their structures, sources of derivatives, physicochemical properties, results of in vitro and in vivo studies, their roles in wound healing and the current challenges in wound healing. Thus, this review provides the current insights and the latest discoveries on both Col and gelatin in their wound healing mechanisms.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.N.); (H.B.)
| | | | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
35
|
Evaluation of the Wound Healing Potential of Some Natural Polymers on Three Experimental Models. Pharmaceuticals (Basel) 2021; 14:ph14050465. [PMID: 34069274 PMCID: PMC8156046 DOI: 10.3390/ph14050465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
The aim of this paper was the preparation and investigation of the wound healing properties of four topical formulations based on natural polymers such as collagen, chitosan, lyophilized egg white, and a mixture of them. The therapeutic assessment of these four ointments was carried out in vivo on the incision, excision, and thermal burn wounds induced on Wistar rats. The treatment was applied topically on wounds once a day, for 21 days. The experimental results were analyzed from a clinical and histopathological point of view. The rheological characterization of the topical formulations was also performed in order to verify their spreadability and structural stability. All ointments had a positive effect on wound contraction and re-epithelization processes, but the one based on total polymers had a significant healing potential on the designed cutaneous lesions due to its synergistic effects.
Collapse
|
36
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
37
|
Masri S, Fauzi MB. Current Insight of Printability Quality Improvement Strategies in Natural-Based Bioinks for Skin Regeneration and Wound Healing. Polymers (Basel) 2021; 13:1011. [PMID: 33805995 PMCID: PMC8036878 DOI: 10.3390/polym13071011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Skin tissue engineering aimed to replace chronic tissue injury commonly occurred due to severe burn and chronic wound in diabetic ulcer patients. The normal skin is unable to be regenerated until the seriously injured tissue is disrupted and losing its function. 3D-bioprinting has been one of the effective methods for scaffold fabrication and is proven to replace the conventional method, which reported several drawbacks. In light of this, researchers have developed a new fabrication approach via 3D-bioprinting by combining biomaterials (bioinks) with cells and biomolecules followed by a suitable crosslinking approach. This advanced technology has been subcategorised into three different printing techniques including inject-based, laser-based, and extrusion-based printing. However, the printable quality of the currently available bioinks demonstrated shortcomings in the physicochemical and mechanical properties. This review aims to identify the limitations raised by using natural-based bioinks and the optimum temperature for various applied printing techniques. It is essential to ensure maintaining the acceptable printed scaffold property such as the optimum pore sizes and porosity that allow cell migration activity. In addition, the properties required for an ideal bioinks design for better scaffold printability were also summarised.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
38
|
Grabska-Zielińska S, Sionkowska A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk Fibroin-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1510. [PMID: 33808809 PMCID: PMC8003607 DOI: 10.3390/ma14061510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
39
|
Yang Y, Campbell Ritchie A, Everitt NM. Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111846. [PMID: 33579509 DOI: 10.1016/j.msec.2020.111846] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/15/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Animal-derived collagen may contain viruses, and its impurity can cause immunological reactions. Chitosan, always required a neutralization step in fabricating it into the biocompatible tissue engineering scaffolds. To avoid these risks and simplify the production process, a series of recombinant human collagen/carboxylated chitosan (RHC-CHI) based soft hydrogel scaffolds were prepared by crosslinking-induced gelation and then investigated their feasibilities for use as soft tissue engineering scaffolds. The gelation time was optimized by modulating the biopolymer concentration or reaction temperature. The hydrogel swelling, degradation rate, and mechanical properties were also investigated. The results showed that these parameters could be tuned by adjusting either the RHC-to-chitosan ratio or the total polymer concentration. The mechanical properties of the hydrogels were improved by adding chitosan, but excess chitosan reduced the hydrogel mechanical strength and accelerated the degradation speed. Cytotoxicity tests showed that all fabricated soft hydrogels were biocompatible and displayed no cytotoxicity. Cytocompatibility tests and qRT-PCR studies indicated that the hydrogel system promoted the adhesion and proliferation of NIH-3T3 cells, and cellular activities were directly up-regulated by RHC. Finally, our in vivo study proved these hydrogels were able to accelerate the cell infiltration and wound closure. These results show that the soft RHC-CHI hydrogels show promise in soft-tissue engineering.
Collapse
Affiliation(s)
- Yang Yang
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alastair Campbell Ritchie
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicola M Everitt
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
40
|
Naomi R, Fauzi MB. Cellulose/Collagen Dressings for Diabetic Foot Ulcer: A Review. Pharmaceutics 2020; 12:E881. [PMID: 32957476 PMCID: PMC7558961 DOI: 10.3390/pharmaceutics12090881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcer (DFU) is currently a global concern and it requires urgent attention, as the cost allocation by the government for DFU increases every year. This review was performed to provide scientific evidence on the advanced biomaterials that can be utilised as a first-line treatment for DFU patients. Cellulose/collagen dressings have a biological property on non-healing wounds, such as DFU. This review aims to analyse scientific-based evidence of cellulose/collagen dressing for DFU. It has been proven that the healing rate of cellulose/collagen dressing for DFU patients demonstrated a significant improvement in wound closure as compared to current standard or conventional dressings. It has been scientifically proven that cellulose/collagen dressing provides a positive effect on non-healing DFU. There is a high tendency for cellulose/collagen dressing to be used, as it highly promotes angiogenesis with a rapid re-epithelisation rate that has been proven effective in clinical trials.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
41
|
Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB. Current Insight of Collagen Biomatrix for Gingival Recession: An Evidence-Based Systematic Review. Polymers (Basel) 2020; 12:E2081. [PMID: 32933133 PMCID: PMC7570157 DOI: 10.3390/polym12092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
Collapse
Affiliation(s)
- Ruth Naomi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Retno Ardhani
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Osa Amila Hafiyyah
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|