1
|
Clogston JD, Foss W, Harris D, Oberoi H, Pan J, Pu E, Guzmán EAT, Walter K, Brown S, Soo PL. Current state of nanomedicine drug products: An industry perspective. J Pharm Sci 2024:S0022-3549(24)00415-5. [PMID: 39276979 DOI: 10.1016/j.xphs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Nanomedicine drug products have reached an unprecedented high in terms of global commercial acceptance and media exposure with the approvals of the mRNA COVID-19 vaccines in 2021. In this paper, we examine the current state of the art for nanomedicine technologies as applied for pharmaceutical products and compare those trends with results from a recent IQ Consortium industry survey on nanomedicine drug products. We find that 1) industry companies continue to push the envelope in terms of new technologies for characterizing their specific drug products, 2) new analytical technologies continue to be utilized by industry to characterize the increasingly complex nanomedicine drug products and 3) alignment and communication are key between industry and regulatory authorities to better understand the regulatory filings that are being submitted. There are many CMC challenges that a company must overcome to successfully file a nanomedicine drug product. In 2022, the FDA Guidance on Drug Products containing Nanomaterials was published, and it provides a roadmap for submission of a nanomedicine drug product. We propose that our paper serves as a complimentary guide providing knowledge on specific CMC issues such as quality attributes, physicochemical characterization methods, excipients, and stability.
Collapse
Affiliation(s)
| | - Willard Foss
- Bristol Myers Squibb, Early Biologics Development, Redwood City, CA, USA
| | | | - Hardeep Oberoi
- AbbVie Inc., Drug Product Development, North Chicago, IL, USA
| | - Jiayi Pan
- Biogen, Technical Development, Cambridge, MA, USA
| | - Elaine Pu
- Bristol Myers Squibb, Drug Product Development, Summit, NJ, USA
| | | | - Katrin Walter
- AstraZeneca, Pharmaceutical Product Development, Gothenburg, Sweden
| | - Scott Brown
- GSK plc. Medicines Development and Supply, Drug Substance and Drug Product Analytical, Collegeville, PA 19426, USA
| | - Patrick Lim Soo
- Pfizer, Pharmaceutical Research & Development, Andover, MA, USA.
| |
Collapse
|
2
|
Bouška M, Milasheuskaya Y, Šlouf M, Knotek P, Pechev S, Prokeš L, Pečinka L, Havel J, Novák M, Jambor R, Němec P. Low-Temperature Synthesis of GeTe Nanoparticles. Chemistry 2024:e202402319. [PMID: 39155819 DOI: 10.1002/chem.202402319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Nanoparticles can offer an alternative approach to fabricate phase-change materials. The chemical synthesis of GeTe nanoparticles using organometallic precursors exploits high-boiling solvents and relatively high temperatures (close or even above crystallization temperatures), as reported in the available literature. The aim of this work is the preparation of GeTe nanoparticles by a low-temperature synthetic method exploiting new organometallic precursors and common organic solvents. Indeed, different preparation methods and characterization of GeTe nanoparticles is discussed. The characterization of the prepared nanomaterial was performed on the basis of X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, laser ablation time-of-flight mass spectrometry, Raman scattering spectroscopy, and dynamic light scattering. The results show that the low-temperature synthetic route leads to amorphous GeTe nanoparticles. Exploited organometallic precursor is stabilised by neutral ligand which can be isolated after the reaction and repeatedly used for further reactions. Furthermore, GeTe nanoparticle size can be tuned by the conditions of the synthesis.
Collapse
Affiliation(s)
- Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06, Prague 6, Czech Republic
| | - Petr Knotek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Stanislav Pechev
- Institut de Chimie de la Matière Condensée de Bordeaux - CNRS, 87, av. du Dr. Albert Schweitzer, 33608, Pessac Cedex, France
| | - Lubomír Prokeš
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Petr Němec
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| |
Collapse
|
3
|
Jeon YN, Ryu SJ, Lee HY, Kim JO, Baek JS. Green Synthesis of Silver Nanoparticle Using Black Mulberry and Characterization, Phytochemical, and Bioactivity. Antibiotics (Basel) 2024; 13:686. [PMID: 39199986 PMCID: PMC11350893 DOI: 10.3390/antibiotics13080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Synthesis of silver nanoparticles (AgNPs) using plant extracts has been proposed as a more advantageous and environmentally friendly alternative compared to existing physical/chemical methods. In this study, AgNPs were synthesized from silver nitrate using black mulberry (BM) extract. The biosynthesized AgNPs were characterized through an UV-visible spectrometer, X-ray diffraction, and transmission electron microscopy. Additionally, BM-AgNPs were subjected to antioxidant, antibacterial, anti-inflammatory, and anticancer activities. AgNPs biosynthesized from BM extract were dark brown in color and showed a strong peak at 437 nm, confirming that AgNPs were successfully synthesized. The size of AgNPs was 170.17 ± 12.65 nm, the polydispersity index was 0.281 ± 0.07, and the zeta potential value was -56.6 ± 0.56 mV, indicating that the particles were stable. The higher total phenol, flavonoid, and anthocyanin content of BM-AgNPs compared to BM extract indicates that the particles contain multiple active substances due to the formation of AgNPs. The DPPH and ABTS assays showed decreased IC50 values compared to BM extract, demonstrating improved antioxidant activity. AgNPs inhibited the growth of S. aureus and E. coli at 600 μg/mL, with minimum bactericidal concentrations determined to be 1000 and 1200 μg/mL, respectively. The anti-inflammatory activity was 64.28% at a BM-AgNPs concentration of 250 μg/mL. As the concentration increased, the difference from the standard decreased, indicating the inhibitory effect of AgNPs on bovine serum albumin denaturation. The viability of MCF-7 cells treated with BM-AgNPs was found to be significantly lower than that of cells treated with BM extract. The IC50 value of BM-AgNPs was determined to be 96.9 μg/mL. This study showed that BM-AgNPs have the potential to be used in the pharmaceutical industry as antioxidant, antibacterial, anti-inflammatory, and anticancer agents.
Collapse
Affiliation(s)
- Yoo-Na Jeon
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su-Ji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ha-Yeon Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jang-Oh Kim
- Department of Radiological Science, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Functional Materia, Kangwon National University, Samcheok 25949, Republic of Korea
- BeNatureBioLab, Chuncheon 24206, Republic of Korea
| |
Collapse
|
4
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
5
|
Yang Q, Hu G, Qiu H, Mia R, Zhang H, Pei L, Wang J. Temperature-Sensitive Fragrance Microcapsules with Double Capsule Walls: A Study on Preparation and Sustained Release Mechanism. Polymers (Basel) 2023; 15:3686. [PMID: 37765539 PMCID: PMC10536482 DOI: 10.3390/polym15183686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microcapsules are small particles that can effectively protect a core material from degradation. Microcapsules with double capsule walls can improve stability and reduce breakage due to the fact that the physical and chemical properties of double-walled materials can complement each other, thus enhancing the quality and applicability of a microcapsule. Microcapsules can achieve controlled release of core materials by using a temperature-sensitive wall material. In this research, gelatin was used as the inner wall material for these double-walled microcapsules. The outer wall material was a composite material prepared by the reaction of a hydroxyl group in gum arabic with an amino group in N-isopropylacrylamide (NIPAM) in the presence of N, N'-methylene bisacrylamide (BIS), while lavender fragrance oil served as the core material. A complex coalescence method was used for the preparation of microcapsules with double capsule walls. The effects of different proportions of gum arabic to NIPAM on the core loading, microcapsule yield and thermal stability of microcapsules were studied in detail. Additionally, the stability of these fragrance microcapsules with double capsule walls in different solvents and pH values was evaluated. The sustained release properties and mechanism of cotton fabrics treated with prepared fragrance microcapsules were investigated. The results show that the microcapsules prepared with a 10:1 ratio of NIPAM to gum arabic have good temperature responsiveness. Therefore, clothing treated with microcapsules with temperature-sensitive wall materials can ensure that the human body has a fresh and pleasant smell in the case of perspiring in summer.
Collapse
Affiliation(s)
- Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Genghao Hu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huili Qiu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongjuan Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Liujun Pei
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| |
Collapse
|
6
|
Yadav VK, Amari A, Mahdhi N, Elkhaleefa AM, Fulekar MH, Patel A. A novel and economical approach for the synthesis of short rod-shaped mesoporous silica nanoparticles from coal fly ash waste by Bacillus circulans MTCC 6811. World J Microbiol Biotechnol 2023; 39:289. [PMID: 37640981 DOI: 10.1007/s11274-023-03734-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Coal fly ash (CFA) is an industrial byproduct produced during the production of electricity in thermal power plants from the burning of pulverized coal. It is considered hazardous due to the presence of toxic heavy metals while it is also considered valuable due to the presence of value-added minerals like silicates, alumina, and iron oxides. Silica nanoparticles' demands and application have increased drastically in the last decade due to their mesoporous nature, high surface area to volume ratio, etc. Here in the present research work, short rod-shaped, mesoporous silica nanoparticles (MSN) have been synthesized from coal fly ash by using Bacillus circulans MTCC 6811 in two steps. Firstly, CFA was kept with the bacterial culture for bioleaching for 25 days in an incubator shaker at 120 rpm. Secondly, the dissolved silica in the medium was precipitated with the 4 M sodium hydroxide to obtain a short rod-shaped MSN. The purification of the synthesized silica particle was done by treating them with 1 M HCl at 120 °C, for 90 min. The synthesized short rod-shaped MSN were characterized by UV-vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Particle size analyzer (PSA), Field emission scanning electron microscopy (FESEM), and transmission electron microscope. The microscopic techniques revealed the short rod-shaped mesoporous silica nanoparticles (MSN) for the final nano-silica, whose size varies from 40 to 80 nm, with an average size of 36 ± 5 nm. The XRD shows the crystalline nature of the synthesized MSN having a crystallite size of 36 nm. The FTIR showed the three characteristic bands in the range of 400-1100 cm-1, indicating the purity of the sample. The energy dispersive X-ray (EDX) showed 53.04 wt% oxygen and 43.42% Si along with 3.54% carbon in the final MSN. The particle size analyzer revealed that the average particle size is 368.7 nm in radius and the polydispersity index (PDI) is 0.667. Such a novel and economical approach could be helpful in the synthesis of silica in high yield with high purity from coal fly ash and other similar waste.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| | - Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, 2092, Tunis, Tunisia
| | - Abubakr M Elkhaleefa
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| | - M H Fulekar
- Centre of Research for Development, Parul University, Wagodia, Vadodara, Gujarat, 391760, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| |
Collapse
|
7
|
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:4808. [PMID: 36902238 PMCID: PMC10003542 DOI: 10.3390/ijms24054808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Globally, cancer is one of the leading causes of death among men and women, it is characterized by the unregulated proliferation of tumor cells. Some of the common risk factors associated with cancer development include the consistent exposure of body cells to carcinogenic agents such as alcohol, tobacco, toxins, gamma rays and alpha particles. Besides the above-mentioned risk factors, conventional therapies such as radiotherapy, and chemotherapy have also been linked to the development of cancer. Over the past decade, tremendous efforts have been invested in the synthesis of eco-friendly green metallic nanoparticles (NPs), and their medical application. Comparatively, metallic NPs have greater advantages over conventional therapies. Additionally, metallic NPs can be functionalized with different targeting moieties e.g., liposomes, antibodies, folic acid, transferrin, and carbohydrates. Herein, we review and discuss the synthesis, and therapeutic potential of green synthesized metallic NPs for enhanced cancer photodynamic therapy (PDT). Finally, the advantages of green hybridized activatable NPs over conventional photosensitizers (PSs) and the future perspectives of nanotechnology in cancer research are discussed in the review. Furthermore, we anticipate that the insights offered in this review will inspire the design and development of green nano-formulations for enhanced image-guided PDT in cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | | |
Collapse
|
8
|
Zdarta J, Jesionowski T. Silica and Silica-Based Materials for Biotechnology, Polymer Composites, and Environmental Protection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7703. [PMID: 36363295 PMCID: PMC9657091 DOI: 10.3390/ma15217703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Over recent years, silica and silica-based materials have become some of the most frequently used materials worldwide [...].
Collapse
|
9
|
Amino Surface Modification and Fluorescent Labelling of Porous Hollow Organosilica Particles: Optimization and Characterization. MATERIALS 2022; 15:ma15072696. [PMID: 35408026 PMCID: PMC9000543 DOI: 10.3390/ma15072696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Surface modification of silica nanoparticles with organic functional groups while maintaining colloidal stability remains a synthetic challenge. This work aimed to prepare highly dispersed porous hollow organosilica particles (pHOPs) with amino surface modification. The amino-surface modification of pHOPs was carried out with 3-aminopropyl(diethoxy)methylsilane (APDEMS) under various reaction parameters, and the optimal pHOP-NH2 sample was selected and labelled with fluorescein isothiocyanate (FITC) to achieve fluorescent pHOPs (F-HOPs). The prepared pHOPs were thoroughly characterized by transmission electron microscopy, dynamic light scattering, FT-IR, UV-Vis and fluorescence spectroscopies, and microfluidic resistive pulse sensing. The optimal amino surface modification of pHOPs with APDEMS was at pH 10.2, at 60 °C temperature with 10 min reaction time. The positive Zeta potential of pHOP-NH2 in an acidic environment and the appearance of vibrations characteristic to the surface amino groups on the FT-IR spectra prove the successful surface modification. A red-shift in the absorbance spectrum and the appearance of bands characteristic to secondary amines in the FTIR spectrum of F-HOP confirmed the covalent attachment of FITC to pHOP-NH2. This study provides a step-by-step synthetic optimization and characterization of fluorescently labelled organosilica particles to enhance their optical properties and extend their applications.
Collapse
|
10
|
Al-Khafaji MA, Gaál A, Jezsó B, Mihály J, Bartczak D, Goenaga-Infante H, Varga Z. Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness. NANOMATERIALS 2022; 12:nano12071172. [PMID: 35407290 PMCID: PMC9000660 DOI: 10.3390/nano12071172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.
Collapse
Affiliation(s)
- Mohammed A. Al-Khafaji
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, UK; (D.B.); (H.G.-I.)
| | - Heidi Goenaga-Infante
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, UK; (D.B.); (H.G.-I.)
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
- Correspondence: ; Tel.: +36-1-382-6568
| |
Collapse
|
11
|
Srb M, Milasheuskaya Y, Jambor R, Kopecká K, Knotek P. Low‐Temperature Sn
0
Nanoparticles Synthesis by Means of Tin(II) N,N‐Complexes Reduction. ChemistrySelect 2021. [DOI: 10.1002/slct.202100618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Srb
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573, 532 10 Pardubice Czech Republic
| | - Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573, 532 10 Pardubice Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573, 532 10 Pardubice Czech Republic
| | - Kateřina Kopecká
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573, 532 10 Pardubice Czech Republic
- Center of nano structured polymers SYNPO, a.s. S. K. Neumanna 1316, 532 07 Pardubice Czech Republic
| | - Petr Knotek
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573, 532 10 Pardubice Czech Republic
| |
Collapse
|