1
|
Alam M, Dar BN, Nanda V. Hydrocolloid-based fruit fillings: A comprehensive review on formulation, techno-functional properties, synergistic mechanisms, and applications. J Texture Stud 2024; 55:e12861. [PMID: 39138121 DOI: 10.1111/jtxs.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
This study offers a comprehensive review of current developments regarding the utilization of diverse hydrocolloids in formulating fruit fillings across different fruit types, their impact on textural attributes, rheological properties, thermal stability, syneresis, and nutritional advantages of fillings and optimization of its characteristics to align with consumer preferences. The review also focuses on the various factors influencing fruit fillings, including the selection of fruits, processing methodologies, the inherent nature and concentration of hydrocolloids, and their synergistic interactions. In depth, scientific work on the impact of the parameters such as pH, total soluble solids, and sugar content within the fruit fillings was also discussed. Additionally, this article focuses on the utilization of the diverse fruit fillings developed by using hydrocolloids in bakery products including pastry, tartlet, muffins, cookies, and so forth. The review establishes that hydrocolloids offer a spectrum of techno-functional attributes conducive to strengthening both the structural and thermal stability of fruit fillings, consequently extending their shelf life. It further establishes that incorporating of hydrocolloids facilitates the development of healthier food products by mitigating the necessity of excessive sugar or various other less favorable ingredients. The incorporation of fruit fillings in bakery products significantly increases the value proposition of these baked goods, contributing to their overall enhancement of quality and sensory value.
Collapse
Affiliation(s)
- Masud Alam
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Basharat Nabi Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| |
Collapse
|
2
|
Chen X, Boffa V, Ma X, Magnacca G, Calza P, Wang D, Meng F, Nielsen AH, Deganello F, Li K, Yue Y. Zeolite Imidazolate Frameworks-8@SiO 2-ZrO 2 Crystal-Amorphous Hybrid Core-Shell Structure as a Building Block for Water Purification Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11835-11848. [PMID: 38382008 PMCID: PMC10921995 DOI: 10.1021/acsami.3c19559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Metal-organic frameworks (MOFs) are emerging as promising materials for water purification membranes, owing to their uniform microporous structures and chemical functionalities. Here, we report a simple procedure for depositing MOF-based nanofiltration membranes on commercial TiO2 ceramic tubular supports, completely avoiding the use of dispersants or binders. Zeolite imidazolate frameworks-8 (ZIF-8) nanocrystals were synthesized in methanol at room temperature and subsequently coated with an amorphous SiO2-ZrO2 gel to generate a dispersion of ZIF-8@SiO2-ZrO2 core-shell nanoparticles. The amorphous SiO2-ZrO2 gel served as a binding agent for the ZIF-8 nanocrystals, thus forming a defect-free continuous membrane layer. After repeating the coating twice, the active layer had a thickness of 0.96 μm, presenting a rejection rate >90% for the total organic carbon in an aquaculture effluent and in a wastewater treatment plant, while reducing the concentration of trimethoprim, here used as a target pollutant. Moreover, the oxide gel provided the MOF-based active layer with good adhesion to the support and enhanced its hydrophilicity, resulting in a membrane with excellent mechanical stability and resistance to fouling during the crossflow filtration of the real wastewater samples. These results implied the high potential of the MOF-based nanocomposite membrane for effective treatment of actual wastewater streams.
Collapse
Affiliation(s)
- Xinxin Chen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Vittorio Boffa
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Xianzheng Ma
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Paola Calza
- Dipartimento
di Chimica, Università di Torino, Torino 10125, Italy
| | - Deyong Wang
- Department
of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Fanpeng Meng
- Shandong
Guiyuan Advanced Ceramic Co., Ltd (Sicer), Zibo 255086, China
| | | | - Francesca Deganello
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Palermo 90146, Italy
| | - Kang Li
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Yuanzheng Yue
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
3
|
Oxygen plasma-assisted contra-diffusion self-assembly of covalent organic framework pervaporation membranes for organic-solvent dehydration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Kalahal PB, Sajjan AM, Yunus Khan TM, Rajhi AA, Achappa S, Banapurmath NR, M A, Duhduh AA. Novel Polyelectrolyte Complex Membranes Containing Carboxymethyl Cellulose-Gelatin for Pervaporation Dehydration of Azeotropic Bioethanol for Biofuel. Polymers (Basel) 2022; 14:polym14235114. [PMID: 36501506 PMCID: PMC9735832 DOI: 10.3390/polym14235114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Polyelectrolyte complex membranes (PECMs) were prepared by combining sodium carboxymethyl cellulose (NaCMC) and gelatin (Ge) with variations in the Ge content in the NaCMC matrix. Characterization methods, such as infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), contact angle analysis (CA), and universal testing machines (UTM) were used to investigate the physicochemical studies of the prepared membranes. The pervaporation characteristics of membranes with Ge content were investigated using an azeotropic mixture of water and bioethanol. The obtained data revealed that the membrane with 15 mass% of Ge (M-3) showed a maximum flux of 7.8403 × 10-2 kg/m2·h with separation selectivity of 2917 at 30 °C. In particular, the total and water flux of PECMs are shown as very close to each other indicating that the fabricated membranes could be employed to successfully break the azeotropic point of water-bioethanol mixtures. Using temperature-dependent permeation and diffusion data, the Arrhenius activation parameters were calculated, and the obtained values of water permeation (Epw) were considerably smaller than bioethanol permeation (EpE). Developed membranes showed the positive heat of sorption (ΔHs), suggesting that Henry's sorption mode is predominant.
Collapse
Affiliation(s)
- Prakash B. Kalahal
- Department of Chemistry, KLE Technological University, Hubballi 580031, India
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India
- Center for Material Science, KLE Technological University, Hubballi 580031, India
- Correspondence: ; Tel.: +91-944-880-1139; Fax: +91-836-237-4985
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Ali A. Rajhi
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Sharanappa Achappa
- Department of Biotechnology, KLE Technological University, Hubballi 580031, India
| | | | - Ashwini M
- AICRP on EAAI (Bioconversion Technology) MARS, University of Agricultural Sciences, Dharwad 580005, India
| | - Alaauldeen A. Duhduh
- Department of Mechanical Engineering Technology, CAIT, Jazan University, Prince Mohammed Street, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Transmission of sodium chloride in PDMS membrane during Pervaporation based on polymer relaxation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Goyal P, Sundarrajan S, Ramakrishna S. A Review on Mixed Matrix Membranes for Solvent Dehydration and Recovery Process. MEMBRANES 2021; 11:membranes11060441. [PMID: 34208292 PMCID: PMC8230825 DOI: 10.3390/membranes11060441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Solvent separation and dehydration are important operations for industries and laboratories. Processes such as distillation and extraction are not always effective and are energy-consuming. An alternate approach is offered by pervaporation, based on the solution-diffusion transport mechanism. Polymer-based membranes such as those made of Polydimethylsiloxane (PDMS) have offered good pervaporation performance. Attempts have been made to improve their performance by incorporating inorganic fillers into the PDMS matrix, in which metal-organic frameworks (MOFs) have proven to be the most efficient. Among the MOFs, Zeolitic imidazolate framework (ZIF) based membranes have shown an excellent performance, with high values for flux and separation factors. Various studies have been conducted, employing ZIF-PDMS membranes for pervaporation separation of mixtures such as aqueous-alcoholic solutions. This paper presents an extensive review of the pervaporation performance of ZIF-based mixed matrix membranes (MMMs), novel synthesis methods, filler modifications, factors affecting membrane performance as well as studies based on polymers other than PDMS for the membrane matrix. Some suggestions for future studies have also been provided, such as the use of biopolymers and self-healing membranes.
Collapse
Affiliation(s)
- Priyanka Goyal
- Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana 500078, India;
| | - Subramanian Sundarrajan
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore;
- Correspondence:
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore;
| |
Collapse
|