1
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Guo SJ, Wang XD, Ma YX, Hu YY, Yang RN, Ma CG. Guar gum series affect nanostructured lipid carriers via electrostatic assembly or steric hindrance: Improving their oral delivery for phytosterols. Int J Biol Macromol 2023; 253:126667. [PMID: 37660846 DOI: 10.1016/j.ijbiomac.2023.126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Surface modification of nanostructured lipid carriers (NLCs) can be an effective way to improve their oral delivery for active ingredients. In this study, four type of guar gum series modified NLCs for the delivery of phytosterols (PS) were constructed and the effects of the polysaccharides on their structure and physicochemical properties were studied. DLS and AFM results revealed that positively charged polysaccharides could bind to PS-NLCs through electrostatic attraction and made the complexes finally take positive charges, while negatively charged polysaccharides were more likely to fill in the gaps of NLC systems to achieve a balance between electrostatic repulsion and intermolecular forces. Although all four polysaccharides exhibited good storage stability and controlled release of PS in simulated intestinal digestion, PS-NLCs modified with partially hydrolyzed cationic guar gum (PHCG) at medium or high concentrations exhibited better gastric stability, mucoadhesion, and cellular uptake, which had considerable significance for improving the oral bioavailability of PS. This might be related to the coating structure of PHCG-PS-NLCs confirmed by AFM, FTIR, and Raman characterization. This study provide a reference value for designing suitable PS-NLC complexes without synthetic surfactants.
Collapse
Affiliation(s)
- Shu-Jing Guo
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Xue-De Wang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yu-Xiang Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yu-Yuan Hu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Rui-Nan Yang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
3
|
Fan X, Peng X, Wang T, Gu Y, Sun G, Shou Q, Song H, Nian R, Liu W. Optimized silk fibroin nanoparticle functionalization with anti-CEA nanobody enhancing active targeting of colorectal cancer cells. Biomed Mater 2023; 18:045027. [PMID: 37321227 DOI: 10.1088/1748-605x/acdeba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
This work aimed to establish a simple and feasible method to obtain silk fibroin nanoparticles (SFNPs) with uniform particles size, and then modify the SFNPs with nanobody (Nb) 11C12 targeting the proximal membrane end of carcinoembryonic antigen on the surface of colorectal cancer (CRC) cells. The regenerated silk fibroin (SF) was isolated using ultrafiltration tubes with a 50 kDa molecular weight cut-off, and the retention fraction (named as SF > 50 kDa) was further self-assembled into SFNPs by ethanol induction. Scanning electron microscope (SEM) and high-resolution transmission electron microscop showed that the SFNPs with uniform particles size were formed. Due to electrostatic adsorption and pH responsiveness, SFNPs have been proved to effectively load and release the anticancer drug doxorubicin hydrochloride (DOX) (DOX@SFNPs). Further, targeting molecule Nb 11C12 was used to modify these nanoparticles, constituting the targeted outer layer of the drug delivery system (DOX@SFNPs-11C12), achieving precise localization to cancer cells. The release amount of DOX observed fromin vitrodrug release profiles increased as follows: pH 7.4 < pH 6.8 < pH 5.4, demonstrating that the DOX release could be accelerated in a weakly acidic environment.In vitrocytotoxicity experiments displayed that SFNPs-11C12 nanoparticles exhibited good safety and biocompatibility. Drug-loaded nanoparticles, DOX@SFNPs-11C12, led to higher LoVo cells apoptosis compared to DOX@SFNPs. Fluorescence spectrophotometer characterization and confocal laser scanning microscopy further showed that the internalization of DOX was highest in the DOX@SFNPs-11C12, certifying that the introduced targeting molecule enhanced the uptake of drug delivery system by LoVo cells. This study provides a simple and operational approach to developing an optimized SFNPs drug delivery system modified by targeting Nb, which can be a good candidate for CRC therapy.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Xinying Peng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingting Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Guochuan Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Qinghui Shou
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 1301 Guanguang Road, Shenzhen 518110, People's Republic of China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| |
Collapse
|
4
|
Bober Z, Aebisher D, Olek M, Kawczyk-Krupka A, Bartusik-Aebisher D. Multiple Cell Cultures for MRI Analysis. Int J Mol Sci 2022; 23:10109. [PMID: 36077507 PMCID: PMC9456466 DOI: 10.3390/ijms231710109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an imaging method that enables diagnostics. In recent years, this technique has been widely used for research using cell cultures used in pharmaceutical science to understand the distribution of various drugs in a variety of biological samples, from cellular models to tissues. MRI's dynamic development in recent years, in addition to diagnostics, has allowed the method to be implemented to assess response to applied therapies. Conventional MRI imaging provides anatomical and pathological information. Due to advanced technology, MRI provides physiological information. The use of cell cultures is very important in the process of testing new synthesized drugs, cancer research, and stem cell research, among others. Two-dimensional (2D) cell cultures conducted under laboratory conditions, although they provide a lot of information, do not reflect the basic characteristics of the tumor. To replicate the tumor microenvironment in science, a three-dimensional (3D) culture of tumor cells was developed. This makes it possible to reproduce in vivo conditions where, in addition, there is a complex and dynamic process of cell-to-cell communication and cell-matrix interaction. In this work, we reviewed current research in 2D and 3D cultures and their use in MRI studies. Articles for each section were collected from PubMed, ScienceDirect, Web of Science, and Google Scholar.
Collapse
Affiliation(s)
- Zuzanna Bober
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Marcin Olek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
5
|
Niu L, Chen G, Feng Y, Liu X, Pan P, Huang L, Guo Y, Li M. Polyethylenimine-Modified Bombyx mori Silk Fibroin as a Delivery Carrier of the ING4-IL-24 Coexpression Plasmid. Polymers (Basel) 2021; 13:3592. [PMID: 34685354 PMCID: PMC8538240 DOI: 10.3390/polym13203592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
One of the major challenges for lung cancer gene therapy is to find a gene delivery vector with high efficiency and low toxicity. In this study, low-molecular-weight polyethyleneimine (PEI, 1.8 kDa) was grafted onto the side chains of Bombyx mori silk fibroin (BSF) to prepare cationized BSF (CBSF), which was used to package the plasmid DNA (pDNA) encoded by the inhibitor of growth 4 (ING4) and interleukin-24 (IL-24). FTIR and 1H-NMR spectra demonstrated that PEI was effectively coupled to the side chains of BSF by amino bonds. The results of the trinitrobenzene sulfonic acid method and zeta potential showed that the free amino group content on BSF increased from 125.1 ± 1.2 µmol/mL to 153.5 ± 2.2 µmol/mL, the isoelectric point increased from 3.68 to 8.82, and the zeta potential reversed from - 11.8 ± 0.1 mV to + 12.4 ± 0.3 mV after PEI grafting. Positively charged CBSF could package pDNA to form spherical CBSF/pDNA complexes. In vitro, human lung adenocarcinoma A549 cells and human embryonic lung fibroblast WI-38 cells were transfected with CBSF/pDNA complexes. Confocal laser scanning microscopy analysis and flow cytometry tests showed that CBSF/pDNA complexes can effectively transfect A549 cells, and the transfection efficiency was higher than that of 25 kDa PEI/pDNA complexes. CCK-8 assay results showed that CBSF/pDNA complexes significantly inhibited the proliferation of A549 cells but had no significant effect on WI-38 cells and exhibited lower cytotoxicity to WI-38 cells than 25 kDa PEI. Therefore, a gene delivery system, constructed with the low-molecular-weight PEI-modified silk fibroin protein and the ING4-IL-24 double gene coexpression plasmid has potential applications in gene therapy for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (L.N.); (G.C.); (Y.F.); (X.L.); (P.P.); (L.H.); (Y.G.)
| |
Collapse
|