1
|
Konieczkowska J, Neugebauer D, Kozanecka-Szmigiel A, Mazur A, Kotowicz S, Schab-Balcerzak E. Photoresponse of new azo pyridine functionalized poly(2-hydroxyethyl methacrylate-co-methyl methacrylate). Sci Rep 2024; 14:9078. [PMID: 38643277 PMCID: PMC11032328 DOI: 10.1038/s41598-024-59704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
A new azo polymer containing photoisomerizable azo pyridine functionalities was synthesized via Mitsunobu reaction of 4-(4-hydroxyphenylazo)pyridine with poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) for creating new photochromic materials. The resulting polymer with azo pyridine side groups was characterized for structural, thermal, and optical properties. UV-vis, 1H NMR and IR spectroscopies confirmed that all hydroxyl groups in p(HEMA-co-MMA) were substituted with azo dye. The obtained azo copolymer exhibited high thermal stability (around 240 °C) and a glass transition temperature (113 °C), promising for applications. The trans-to-cis isomerization upon UV irradiation and the thermal back reaction of the azo chromophore in the copolymer in the solid state was studied. A photostationary state with 50% content of cis-isomers upon 6 min of UV irradiation was reached, and during 48 h dark relaxation at ambient temperature, all cis-isomers converted to the trans form. Additionally, the possibility of efficient photogeneration of surface relief gratings with high amplitude of azo copolymer surface modulation was demonstrated.
Collapse
Affiliation(s)
- Jolanta Konieczkowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Anna Kozanecka-Szmigiel
- Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662, Warsaw, Poland
| | - Aleksy Mazur
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006, Katowice, Poland
| | - Ewa Schab-Balcerzak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| |
Collapse
|
2
|
Luo C, Liu S, Luo W, Wang J, He H, Chen C, Xiao L, Liu C, Li Y. Fabrication of PLCL Block Polymer with Tunable Structure and Properties for Biomedical Application. Macromol Biosci 2023; 23:e2200507. [PMID: 36645702 DOI: 10.1002/mabi.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Indexed: 01/17/2023]
Abstract
Biodegradable materials are pivotal in the biomedical field, where how to precisely control their structure and performance is critical for their translational application. In this study, poly(L-lactide-b-ε-caprolactone) block copolymers (bPLCL) with well-defined segment structure are obtained by a first synthesis of poly(ε-caprolactone) soft block, followed by ring opening polymerization of lactide to form poly(L-lactide acid) hard block. The pre-polymerization allows for fabrication of bPLCL with the definite compositions of soft/hard segment while preserving the individual segment of their special soft or hard segment. These priorities make the bPLCL afford biodegradable polymer with better mechanical and biodegradable controllability than the random poly(L-lactide-co-ε-caprolactone) (rPLCL) synthesized via traditional one-pot polymerization. 10 mol% ε-caprolactone introduction can result in a formation of an elastic polymer with elongation at break of 286.15% ± 55.23%. Also, bPLCL preserves the unique crystalline structure of the soft and hard segments to present a more sustainable biodegradability than the rPLCL. The combinative merits make the pre-polymerization technique a promising strategy for a scalable production of PLCL materials for potential biomedical application.
Collapse
Affiliation(s)
- Chenmin Luo
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Luo
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Can Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Queensland, 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Queensland, 4000, Australia
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
3
|
Odrobińska J, Skonieczna M, Neugebauer D. PEG Graft Polymer Carriers of Antioxidants: In Vitro Evaluation for Transdermal Delivery. Pharmaceutics 2020; 12:E1178. [PMID: 33287225 PMCID: PMC7761655 DOI: 10.3390/pharmaceutics12121178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023] Open
Abstract
The in vitro biochemical evaluation of the applicability of polymers carrying active substances (micelles and conjugates) was carried out. Previously designed amphiphilic graft copolymers with retinol or 4-n-butylresorcinol functionalized polymethacrylate backbone and poly(ethylene glycol) (PEG) side chains that included Janus-type heterografted copolymers containing both PEG and poly(ε-caprolactone) (PCL) side chains were applied as micellar carriers. The polymer self-assemblies were convenient to encapsulate arbutin (ARB) as the selected active substances. Moreover, the conjugates of PEG graft copolymers with ferulic acid (FA) or lipoic acid (LA) were also investigated. The permeability of released active substances through a membrane mimicking skin was evaluated by conducting transdermal tests in Franz diffusion cells. The biological response to new carriers with active substances was tested across cell lines, including normal human dermal fibroblasts (NHDF), human epidermal keratinocyte (HaCaT), as well as cancer melanoma (Me45) and metastatic human melanoma (451-Lu), for comparison. These polymer systems were safe and non-cytotoxic at the tested concentrations for healthy skin cell lines according to the MTT test. Cytometric evaluation of cell cycles as well as cell death defined by Annexin-V apoptosis assays and senescence tests showed no significant changes under action of the delivery systems, as compared to the control cells. In vitro tests confirmed the biochemical potential of these antioxidant carriers as beneficial components in cosmetic products, especially applied in the form of masks and eye pads.
Collapse
Affiliation(s)
- Justyna Odrobińska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
4
|
Micellar Carriers Based on Amphiphilic PEG/PCL Graft Copolymers for Delivery of Active Substances. Polymers (Basel) 2020; 12:polym12122876. [PMID: 33266207 PMCID: PMC7760728 DOI: 10.3390/polym12122876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Amphiphilic copolymers of alkyne functionalized 2-hydroxyethyl methacrylate (AlHEMA) and poly(ethylene glycol) methyl ether methacrylate (MPEGMA) with graft or V-shaped graft topologies were synthesized. The functionalization of poly(ε-caprolactone) (PCL) with azide group enabled attachment to P(AlHEMA-co-MPEGMA) copolymers via a "click" alkyne-azide reaction. The introduction of PCL as a second side chain type in addition to PEG resulted in heterografted copolymers with modified properties such as biodegradability. "Click" reactions were carried out with efficiencies between 17-70% or 32-50% (for lower molecular weight PCL, 4000 g/mol, or higher molecular weight PCL, 9000 g/mol, respectively) depending on the PEG grafting density. The graft copolymers were self-assembled into micellar superstructures with the ability to encapsulate active substances, such as vitamin C (VitC), arbutin (ARB) or 4-n-butylresorcinol (4nBRE). Drug loading contents (DLC) were obtained in the range of 5-55% (VitC), 39-91% (ARB) and 42-98% (4nBRE). In vitro studies carried out in a phosphate buffer saline (PBS) solution (at pH 7.4 or 5.5) gave the maximum release levels of active substances after 10-240 min depending on the polymer system. Permeation tests in Franz chambers indicated that the bioactive substances after release by micellar systems penetrated through the artificial skin membrane in small amounts, and a majority of the bioactive substances remained inside the membrane, which is satisfactory for most cosmetic applications.
Collapse
|