1
|
Yu Z, Yuan J, Yu Y. Heraclenin promotes the osteogenic differentiation of bone marrow stromal cells by activating the RhoA/ROCK pathway. Histol Histopathol 2024; 39:1065-1077. [PMID: 38258549 DOI: 10.14670/hh-18-702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Osteoporosis is a devastating skeletal disease, the pathogenesis of which is related to abnormal bone metabolism, featured by the imbalance between osteoblastic bone formation and osteoclastic bone resorption. Stem cell-based therapies have been demonstrated to improve osteoporosis treatment. Previously, the linear furanocoumarin heraclenin was reported to enhance osteoblast differentiation and mineralization in mouse mesenchymal stem cells (MSCs), suggesting its potential for osteogenic differentiation and bone regeneration. Our study was designed to confirm the promotive role of heraclenin on osteogenic differentiation of human bone MSCs (BMSCs) and explore the underlying mechanisms. METHODS Human BMSCs were treated for 24, 48, and 72h with heraclenin (5, 10, 20, 40, and 80 μM), and cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. To further evaluate the cytotoxicity of heraclenin, cell suspension obtained from BMSCs treated with heraclenin (5, 10, and 20 μM) for 72h was subjected to a MUSE™ cell analyzer for cell viability and count assay. BMSCs were incubated in osteogenic induction medium for 7 days. Then, osteogenic differentiation and mineralization of BMSCs were assessed through alkaline phosphatase (ALP) and Alizarin Red S staining. The expression of osteogenesis markers including ALP, osteocalcin (OCN), osterix (OSX), and runt-related transcription factor 2 (RUNX2) was detected via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The effects of heraclenin on the RhoA/ROCK pathway were estimated through western blotting. Y-27632, the ROCK inhibitor, was used to confirm the role of the RhoA/ROCK pathway in heraclenin-mediated osteogenic differentiation of BMSCs. RESULTS Heraclenin (5-80 μM) was non-toxic on human BMSCs. Heraclenin treatment (5-20 μM) dose-dependently enhanced ALP activity and calcium deposition. Furthermore, heraclenin promoted ALP, OCN, OSX, and RUNX2 mRNA and protein expression. Mechanically, heraclenin treatment increased RhoA and ROCK1 mRNA expression, stimulated the translocation of ROCK from the cytosolic to the membrane fraction, and elevated the protein levels of phosphorylated cofilin (p-cofilin) and active RhoA. Additionally, treatment with Y-27632 overturned the promotion of heraclenin on ALP activity, calcium deposition, the expression of osteogenesis markers, and the RhoA/ROCK signaling pathway. CONCLUSION Heraclenin facilitates the osteogenic differentiation of human BMSCs through the activation of the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Zuguang Yu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Department of Orthopedics 3, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yuanyuan Yu
- Department of Geriatrics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China.
| |
Collapse
|
2
|
Ferrari M, Taboni S, Chan HHL, Townson J, Gualtieri T, Franz L, Ruaro A, Mathews S, Daly MJ, Douglas CM, Eu D, Sahovaler A, Muhanna N, Ventura M, Dey K, Pandini S, Pasini C, Re F, Bernardi S, Bosio K, Mattavelli D, Doglietto F, Joshi S, Gilbert RW, Nicolai P, Viswanathan S, Sartore L, Russo D, Irish JC. Hydrogel-chitosan and polylactic acid-polycaprolactone bioengineered scaffolds for reconstruction of mandibular defects: a preclinical in vivo study with assessment of translationally relevant aspects. Front Bioeng Biotechnol 2024; 12:1353523. [PMID: 39076208 PMCID: PMC11284118 DOI: 10.3389/fbioe.2024.1353523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Background: Reconstruction of mandibular bone defects is a surgical challenge, and microvascular reconstruction is the current gold standard. The field of tissue bioengineering has been providing an increasing number of alternative strategies for bone reconstruction. Methods: In this preclinical study, the performance of two bioengineered scaffolds, a hydrogel made of polyethylene glycol-chitosan (HyCh) and a hybrid core-shell combination of poly (L-lactic acid)/poly ( ε -caprolactone) and HyCh (PLA-PCL-HyCh), seeded with different concentrations of human mesenchymal stromal cells (hMSCs), has been explored in non-critical size mandibular defects in a rabbit model. The bone regenerative properties of the bioengineered scaffolds were analyzed by in vivo radiological examinations and ex vivo radiological, histomorphological, and immunohistochemical analyses. Results: The relative density increase (RDI) was significantly more pronounced in defects where a scaffold was placed, particularly if seeded with hMSCs. The immunohistochemical profile showed significantly higher expression of both VEGF-A and osteopontin in defects reconstructed with scaffolds. Native microarchitectural characteristics were not demonstrated in any experimental group. Conclusion: Herein, we demonstrate that bone regeneration can be boosted by scaffold- and seeded scaffold-reconstruction, achieving, respectively, 50% and 70% restoration of presurgical bone density in 120 days, compared to 40% restoration seen in spontaneous regeneration. Although optimization of the regenerative performance is needed, these results will help to establish a baseline reference for future experiments.
Collapse
Affiliation(s)
- Marco Ferrari
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Stefano Taboni
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Harley H. L. Chan
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Jason Townson
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Tommaso Gualtieri
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Department of Otorhinolaryngology, Head & Neck Surgery, Nuovo Santo Stefano Civil Hospital, Prato, Italy
| | - Leonardo Franz
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Alessandra Ruaro
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Smitha Mathews
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michael J. Daly
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Catriona M. Douglas
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology, Head and Neck Surgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Donovan Eu
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| | - Axel Sahovaler
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Head & Neck Surgery Unit, University College London Hospitals, London, United Kingdom
| | - Nidal Muhanna
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Manuela Ventura
- STTARR Innovation Centre, University Health Network, Toronto, ON, Canada
- Human Technopole Foundation, Milan, Italy
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Stefano Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Chiara Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Federica Re
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Katia Bosio
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Francesco Doglietto
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Catholic University School of Medicine, Rome, Italy
| | - Shrinidh Joshi
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ralph W. Gilbert
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Sowmya Viswanathan
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Jonathan C. Irish
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
3
|
Johnson PA, Ackerman JE, Kurowska-Stolarska M, Coles M, Buckley CD, Dakin SG. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. THE LANCET. RHEUMATOLOGY 2023; 5:e553-e563. [PMID: 38251499 DOI: 10.1016/s2665-9913(23)00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 01/23/2024]
Abstract
Diseases affecting the soft tissues of the joint represent a considerable global health burden, causing pain and disability and increasing the likelihood of developing metabolic comorbidities. Current approaches to investigating the cellular basis of joint diseases, including osteoarthritis, rheumatoid arthritis, tendinopathy, and arthrofibrosis, involve well phenotyped human tissues, animal disease models, and in-vitro tissue culture models. Inherent challenges in preclinical drug discovery have driven the development of state-of-the-art, in-vitro human tissue models to rapidly advance therapeutic target discovery. The clinical potential of such models has been substantiated through successful recapitulation of the pathobiology of cancers, generating accurate predictions of patient responses to therapeutics and providing a basis for equivalent musculoskeletal models. In this Review, we discuss the requirement to develop physiologically relevant three-dimensional (3D) culture systems that could advance understanding of the cellular and molecular basis of diseases that affect the soft tissues of the joint. We discuss the practicalities and challenges associated with modelling the complex extracellular matrix of joint tissues-including cartilage, synovium, tendon, and ligament-highlighting the importance of considering the joint as a whole organ to encompass crosstalk across tissues and between diverse cell types. The design of bespoke in-vitro models for soft-tissue joint diseases has the potential to inform functional studies of the cellular and molecular mechanisms underlying disease onset, progression, and resolution. Use of these models could inform precision therapeutic targeting and advance the field towards personalised medicine for patients with common musculoskeletal diseases.
Collapse
Affiliation(s)
- Peter A Johnson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jessica E Ackerman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Mark Coles
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Re F, Borsani E, Rezzani R, Sartore L, Russo D. Bone Regeneration Using Mesenchymal Stromal Cells and Biocompatible Scaffolds: A Concise Review of the Current Clinical Trials. Gels 2023; 9:gels9050389. [PMID: 37232981 DOI: 10.3390/gels9050389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Bone regenerative medicine is a clinical approach combining live osteoblast progenitors, such as mesenchymal stromal cells (MSCs), with a biocompatible scaffold that can integrate into host bone tissue and restore its structural integrity. Over the last few years, many tissue engineering strategies have been developed and thoroughly investigated; however, limited approaches have been translated to clinical application. Consequently, the development and clinical validation of regenerative approaches remain a centerpiece of investigational efforts towards the clinical translation of advanced bioengineered scaffolds. The aim of this review was to identify the latest clinical trials related to the use of scaffolds with or without MSCs to regenerate bone defects. A revision of the literature was performed in PubMed, Embase, and Clinicaltrials.gov from 2018 up to 2023. Nine clinical trials were analyzed according to the inclusion criteria: six presented in the literature and three reported in Clinicaltrials.gov. Data were extracted covering background trial information. Six of the clinical trials added cells to scaffolds, while three used scaffolds alone. The majority of scaffolds were composed of calcium phosphate ceramic alone, such as β-tricalcium phosphate (TCP) (two clinical trials), biphasic calcium phosphate bioceramic granules (three clinical trials), and anorganic bovine bone (two clinical trials), while bone marrow was the primary source of the MSCs (five clinical trials). The MSC expansion was performed in GMP facilities, using human platelet lysate (PL) as a supplement without osteogenic factors. Only one trial reported minor adverse events. Overall, these findings highlight the importance and efficacy of cell-scaffold constructs in regenerative medicine under different conditions. Despite the encouraging clinical results obtained, further studies are needed to assess their clinical efficacy in treating bone diseases to optimize their application.
Collapse
Affiliation(s)
- Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Chen SC, Jiang T, Liu QY, Liu ZT, Su YF, Su HT. Hsa_circ_0001485 promoted osteogenic differentiation by targeting BMPR2 to activate the TGFβ-BMP pathway. Stem Cell Res Ther 2022; 13:453. [PMID: 36064455 PMCID: PMC9446709 DOI: 10.1186/s13287-022-03150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a new type of stable noncoding RNA and have been proven to play a crucial role in osteoporosis. This study explored the role and mechanism of hsa_circ_0001485 in osteogenic differentiation. Methods Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) enrichment analysis were performed according to the previous sequencing data in human bone marrow mesenchymal stem cells (BMSC) before and after the induction of osteogenic differentiation on the differentially expressed circRNAs, to screen out signaling pathways associated with osteogenic differentiation. The hFOB 1.19 cells were used to verify the function and mechanism of specific circRNAs in osteogenic differentiation. Additionally, small interfering fragments and overexpression plasmids were used to determine the role of specific circRNAs during osteogenic differentiation. Furthermore, pull-down experiments and mass spectrometry were performed to determine the proteins that bind to specific circRNAs. Results The KEGG and GO enrichment analyses showed that the TGFβ-BMP signaling pathway was related to the osteogenic differentiation process, and four circRNAs were associated with the pathway. The quantitative polymerase chain reaction analysis revealed that hsa_circ_0001485 expression was increased during the osteogenic differentiation process of BMSCs. Knockdown of hsa_circ_0001485 suppressed the activity of the alkaline phosphatase enzyme and the expression of RUNX2, osteopontin, and osteocalcin in the osteogenic hFOB 1.19 cells, whereas overexpression of hsa_circ_0001485 promoted their expression. Additionally, we found that hsa_circ_0001485 and BMPR2 targeted binding to activate the TGFβ-BMP signaling pathway and promoted osteogenic differentiation through mass spectrometry analysis. Conclusion This study demonstrates that hsa_circ_0001485 is highly expressed in the osteogenic hFOB 1.19 cells, which activate the TGFβ-BMP pathway through targeted binding of BMPR2, and plays a positive role in regulating osteogenic differentiation.
Collapse
Affiliation(s)
- Shan-Chuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Tao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China.
| | - Qi-Yu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Zi-Tao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Yu-Fei Su
- Department of Rehabilitation and Recovery, Albury Wodonga Health, Albury, NSW, 2640, Australia
| | - Hai-Tao Su
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
6
|
Zhang Y, Dou X, Zhang L, Wang H, Zhang T, Bai R, Sun Q, Wang X, Yu T, Wu D, Han B, Deng X. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioact Mater 2021; 11:130-139. [PMID: 34938918 PMCID: PMC8665342 DOI: 10.1016/j.bioactmat.2021.09.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Hydrogels are extracellular-matrix-like biomimetic materials that have wide biomedical applications in tissue engineering and drug delivery. However, most hydrogels cannot simultaneously fulfill the mechanical and cell compatibility requirements. In the present study, we prepared a semi-interpenetrating network composite gel (CG) by incorporating short chain chitosan (CS) into a covalent tetra-armed poly(ethylene glycol) network. In addition to satisfying physicochemical, mechanics, biocompatibility, and cell affinity requirements, this CG easily encapsulated acetylsalicylic acid (ASA) via electrostatic interactions and chain entanglement, achieving sustained release for over 14 days and thus promoting periodontal ligament stem cell (PDLSC) proliferation and osteogenic differentiation. In vivo studies corroborated the capacity of PDLSCs and ASA-laden CG to enhance new bone regeneration in situ using a mouse calvarial bone defect model. This might be attributed to PDLSCs and host mesenchymal stem cells expressing monocyte chemoattractant protein-1, which upregulated M2 macrophage recruitment and polarization in situ, indicating its appealing potential in bone tissue engineering. A facile method to prepare the composite gels with advantages of easy operation, good biocompatibility and biodegradability. Composite gels can simultaneously fulfill the mechanical strength and cell-compatibility requirements. Composite gels can achieve the loading and sustained release of acetylsalicylic acid via electrostatic interaction and chain entanglement. Acetylsalicylic-acid-encapsulated composite gel is paramount to promote PDLSCs-mediated bone regeneration. The underlying mechanism might be associated with upregulation of MCP-1 and macrophage M2 polarization.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Xueyu Dou
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Xuliang Deng
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China.,Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
7
|
Wang Y, Gan Z, Lu H, Liu Z, Shang P, Zhang J, Yin W, Chu H, Yuan R, Ye Y, Chen P, Rong M. Impact of High-Altitude Hypoxia on Early Osseointegration With Bioactive Titanium. Front Physiol 2021; 12:689807. [PMID: 35035356 PMCID: PMC8753411 DOI: 10.3389/fphys.2021.689807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Nowadays, the bone osseointegration in different environments is comparable, but the mechanism is unclear. This study aimed to investigate the osseointegration of different bioactive titanium surfaces under normoxic or high-altitude hypoxic environments. Titanium implants were subjected to one of two surface treatments: (1) sanding, blasting, and acid etching to obtain a rough surface, or (2) extensive polishing to obtain a smooth surface. Changes in the morphology, proliferation, and protein expression of osteoblasts on the rough and smooth surfaces were examined, and bone formation was studied through western blotting and animal-based experiments. Our findings found that a hypoxic environment and rough titanium implant surface promoted the osteogenic differentiation of osteoblasts and activated the JAK1/STAT1/HIF-1α pathway in vitro. The animal study revealed that following implant insertion in tibia of rabbit, bone repair at high altitudes was slower than that at low altitudes (i.e., in plains) after 2weeks; however, bone formation did not differ significantly after 4weeks. The results of our study showed that: (1) The altitude hypoxia environment would affect the early osseointegration of titanium implants while titanium implants with rough surfaces can mitigate the effects of this hypoxic environment on osseointegration, (2) the mechanism may be related to the activation of JAK1/STAT1/HIF-1α pathway, and (3) our results suggest the osteogenesis of titanium implants, such as oral implants, is closely related to the oxygen environment. Clinical doctors, especially dentists, should pay attention to the influence of hypoxia on early osseointegration in patients with high altitude. For example, it is better to choose an implant system with rough implant surface in the oral cavity of patients with tooth loss at high altitude.
Collapse
Affiliation(s)
- Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zekun Gan
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haibin Lu
- Department of Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Wuwei Yin
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongxing Chu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Yingxin Ye
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Pei Chen,
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Mingdeng Rong,
| |
Collapse
|
8
|
Re F, Sartore L, Borsani E, Ferroni M, Baratto C, Mahajneh A, Smith A, Dey K, Almici C, Guizzi P, Bernardi S, Faglia G, Magni F, Russo D. Mineralization of 3D Osteogenic Model Based on Gelatin-Dextran Hybrid Hydrogel Scaffold Bioengineered with Mesenchymal Stromal Cells: A Multiparametric Evaluation. MATERIALS 2021; 14:ma14143852. [PMID: 34300769 PMCID: PMC8306641 DOI: 10.3390/ma14143852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Gelatin–dextran hydrogel scaffolds (G-PEG-Dx) were evaluated for their ability to activate the bone marrow human mesenchymal stromal cells (BM-hMSCs) towards mineralization. G-PEG-Dx1 and G-PEG-Dx2, with identical composition but different architecture, were seeded with BM-hMSCs in presence of fetal bovine serum or human platelet lysate (hPL) with or without osteogenic medium. G-PEG-Dx1, characterized by a lower degree of crosslinking and larger pores, was able to induce a better cell colonization than G-PEG-Dx2. At day 28, G-PEG-Dx2, with hPL and osteogenic factors, was more efficient than G-PEG-Dx1 in inducing mineralization. Scanning electron microscopy (SEM) and Raman spectroscopy showed that extracellular matrix produced by BM-hMSCs and calcium-positive mineralization were present along the backbone of the G-PEG-Dx2, even though it was colonized to a lesser degree by hMSCs than G-PEG-Dx1. These findings were confirmed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), detecting distinct lipidomic signatures that were associated with the different degree of scaffold mineralization. Our data show that the architecture and morphology of G-PEG-Dx2 is determinant and better than that of G-PEG-Dx1 in promoting a faster mineralization, suggesting a more favorable and active role for improving bone repair.
Collapse
Affiliation(s)
- Federica Re
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (L.S.); (K.D.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy;
- CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Allia Mahajneh
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (L.S.); (K.D.)
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Camillo Almici
- Laboratory for Stem Cell Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Pierangelo Guizzi
- Orthopedics and Traumatology Unit, ASST Spedali Civili, Via Papa Giovanni XXIII 4, 25063 Gardone Val Trompia, 25123 Brescia, Italy;
| | - Simona Bernardi
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Guido Faglia
- PRISM Lab, CNR-INO, 25123 Brescia, Italy; (C.B.); (G.F.)
- Department of Information Engineering (DII), University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Domenico Russo
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Correspondence:
| |
Collapse
|
9
|
Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. BIOLOGY 2021; 10:biology10070579. [PMID: 34202598 PMCID: PMC8301056 DOI: 10.3390/biology10070579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.
Collapse
|
10
|
Gibler P, Gimble J, Hamel K, Rogers E, Henderson M, Wu X, Olesky S, Frazier T. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells 2021; 10:1378. [PMID: 34204869 PMCID: PMC8227575 DOI: 10.3390/cells10061378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.
Collapse
Affiliation(s)
- Peyton Gibler
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Jeffrey Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Katie Hamel
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Emma Rogers
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Michael Henderson
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Spencer Olesky
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|