1
|
Liu Y, Zhao Z, Kang L, Qiu S, Li Q. Molecular Doping Modulation and Applications of Structure-Sorted Single-Walled Carbon Nanotubes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304075. [PMID: 37675833 DOI: 10.1002/smll.202304075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) that have a reproducible distribution of chiralities or single chirality are among the most competitive materials for realizing post-silicon electronics. Molecular doping, with its non-destructive and fine-tunable characteristics, is emerging as the primary doping approach for the structure-controlled SWCNTs, enabling their eventual use in various functional devices. This review provides an overview of important advances in the area of molecular doping of structure-controlled SWCNTs and their applications. The first part introduces the underlying physical process of molecular doping, followed by a comprehensive survey of the commonly used dopants for SWCNTs to date. Then, it highlights how the convergence of molecular doping and structure-sorting strategies leads to significantly improved functionality of SWCNT-based field-effect transistor arrays, transparent electrodes in optoelectronics, thermoelectrics, and many emerging devices. At last, several challenges and opportunities in this field are discussed, with the hope of shedding light on promoting the practical application of SWCNTs in future electronics.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lixing Kang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Song Qiu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
2
|
Hadjichristov GB, Marinov YG. Photoluminescent Thin Films of Room-Temperature Glassy Tris(keto-hydrozone) Discotic Liquid Crystals and Their Nanocomposites with Single-Walled Carbon Nanotubes for Optoelectronics. ACS OMEGA 2023; 8:27102-27116. [PMID: 37546593 PMCID: PMC10398711 DOI: 10.1021/acsomega.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
This study addresses the photoresponse of liquid-crystalline tris(keto-hydrozone) discotic (TKHD)-a star-shaped molecular structure with three branches. Object of our research interest was also TKHD filled with single-walled carbon nanotubes (SWCNTs) at a concentration of 1 wt %. At room temperature, the discotic liquid crystals in thin films (thickness 3 μm) of both TKHD and nanocomposite SWCNT/TKHD were in a glassy state. Such glassy thin films exhibited photoluminescence ranging from the deep-red to the near-infrared spectral region, being attractive for organic optoelectronics. The addition of SWCNTs to TKHD was found to stabilize the photoluminescence of TKHD, which is of significance for optoelectronic device applications. The photothermoelectrical response of highly conductive SWCNT/TKHD nanocomposite films was characterized by electrical impedance spectroscopy in the frequency range from 1 Hz to 1 MHz of the applied electric field. It was elucidated that the reversible photothermoelectrical effect in SWCNT/TKHD films occurs through SWCNTs and their network.
Collapse
Affiliation(s)
- Georgi B. Hadjichristov
- Laboratory
of Optics & Spectroscopy, Georgi Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia BG-1784, Bulgaria
| | - Yordan G. Marinov
- Laboratory
of Liquid Crystals & Biomolecular Layers, Georgi Nadjakov Institute
of Solid State Physics, Bulgarian Academy
of Sciences, 72 Tzarigradsko
Chaussee Blvd., Sofia BG-1784, Bulgaria
| |
Collapse
|
3
|
Podlesny B, Hinkle KR, Hayashi K, Niidome Y, Shiraki T, Janas D. Highly-Selective Harvesting of (6,4) SWCNTs Using the Aqueous Two-Phase Extraction Method and Nonionic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207218. [PMID: 36856265 DOI: 10.1002/advs.202207218] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Monochiral single-walled carbon nanotubes (SWCNTs) are indispensable for advancing the technology readiness level of nanocarbon-based concepts. In recent times, many separation techniques have been developed to obtain specific SWCNTs from raw unsorted materials to catalyze the development in this area. This work presents how the aqueous two-phase extraction (ATPE) method can be enhanced for the straightforward isolation of (6,4) SWCNTs in one step. Introducing nonionic surfactant into the typically employed mixture of anionic surfactants, which drive the partitioning, is essential to increasing the ATPE system's resolution. A thorough analysis of the parameter space by experiments and modeling reveals the underlying interactions between SWCNTs, surfactants, and phase-forming agents, which drive the partitioning. Based on new insight gained on this front, a separation mechanism is proposed. Notably, the developed method is highly robust, which is proven by isolating (6,4) SWCNTs from several raw SWCNT materials, including SWCNT waste generated over the years in the laboratory.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Kevin R Hinkle
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH, 45469, USA
| | - Keita Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
4
|
Janas D. Special Issue of Materials Focused on "Electrical, Thermal and Optical Properties of Nanocarbon Materials". MATERIALS 2022; 15:ma15051649. [PMID: 35268880 PMCID: PMC8910996 DOI: 10.3390/ma15051649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
5
|
Effective Doping of Single-Walled Carbon Nanotubes with Polyethyleneimine. MATERIALS 2020; 14:ma14010065. [PMID: 33375643 PMCID: PMC7795803 DOI: 10.3390/ma14010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
More and more electrically conducting materials are required to sustain the technological progress of civilization. Faced with the performance limits of classical materials, the R&D community has put efforts into developing nanomaterials, which can offer sufficiently high operational parameters. In this work, single-walled carbon nanotubes (SWCNTs) were doped with polyethyleneimine (PEI) to create such material. The results show that it is most fruitful to combine these components at the synthesis stage of an SWCNT network from their dispersion. In this case, the electrical conductivity of the material is boosted from 249 ± 21 S/cm to 1301 ± 56 S/cm straightforwardly and effectively.
Collapse
|
6
|
Rdest M, Janas D. Enhancing Electrical Conductivity of Composites of Single-Walled Carbon Nanotubes and Ethyl Cellulose with Water Vapor. MATERIALS 2020; 13:ma13245764. [PMID: 33348674 PMCID: PMC7767263 DOI: 10.3390/ma13245764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022]
Abstract
Electrically conducting composites are highly sought-after materials. Their capacity to withstand mechanical deformation while simultaneously offering facile charge transport recently opened numerous exploitation fields for them. In this contribution, composites were made from single-walled carbon nanotubes (SWCNTs) and ethyl cellulose (EC). Then, a straightforward process of doping involving water vapor was developed and tested over 30 days. The inclusion of water in the EC/SWCNT network resulted in a notable increase in the electrical conductivity from 250 ± 21 S/cm to 905 ± 34 S/cm. Interestingly, doping of the material experienced remarkable stability due to the favorable surface chemistry of the EC filler.
Collapse
Affiliation(s)
- Monika Rdest
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK;
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-32-237-10-82
| |
Collapse
|
7
|
Qin Y, Yang L, Wei J, Yang S, Zhang M, Wang X, Yang F. Doping Effect on Cu 2Se Thermoelectric Performance: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5704. [PMID: 33327543 PMCID: PMC7765055 DOI: 10.3390/ma13245704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Cu2Se, owing to its intrinsic excellent thermoelectric (TE) performance emerging from the peculiar nature of "liquid-like" Cu+ ions, has been regarded as one of the most promising thermoelectric materials recently. However, the commercial use is still something far from reach unless effective approaches can be applied to further increase the figure of merit (ZT) of Cu2Se, and doping has shown wide development prospect. Until now, the highest ZT value of 2.62 has been achieved in Al doped samples, which is twice as much as the original pure Cu2Se. Herein, various doping elements from all main groups and some transitional groups that have been used as dopants in enhancing the TE performance of Cu2Se are summarized, and the mechanisms of TE performance enhancement are analyzed. In addition, points of great concern for further enhancing the TE performance of doped Cu2Se are proposed.
Collapse
Affiliation(s)
- Yuanhao Qin
- College of Microelectronics and Research Center of Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.Q.); (L.Y.); (M.Z.); (F.Y.)
| | - Liangliang Yang
- College of Microelectronics and Research Center of Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.Q.); (L.Y.); (M.Z.); (F.Y.)
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
| | - Jiangtao Wei
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
| | - Shuqi Yang
- Electrical, Computer, and Systems Engineering Department, Rensselaer Polytechnic Institute Troy, New York, NY 12180, USA;
| | - Mingliang Zhang
- College of Microelectronics and Research Center of Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.Q.); (L.Y.); (M.Z.); (F.Y.)
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
| | - Xiaodong Wang
- College of Microelectronics and Research Center of Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.Q.); (L.Y.); (M.Z.); (F.Y.)
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
- Beijing Institute of Quantum Information Science, Beijing 100193, China
- Beijing Semiconductor Micro/Nano Integrated Engineering Technology Research Center, Beijing 100083, China
| | - Fuhua Yang
- College of Microelectronics and Research Center of Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.Q.); (L.Y.); (M.Z.); (F.Y.)
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
- Beijing Institute of Quantum Information Science, Beijing 100193, China
- Beijing Semiconductor Micro/Nano Integrated Engineering Technology Research Center, Beijing 100083, China
| |
Collapse
|