1
|
Ejsmont A, Darvishzad T, Słowik G, Stelmachowski P, Goscianska J. Cobalt-based MOF-derived carbon electrocatalysts with tunable architecture for enhanced oxygen evolution reaction. J Colloid Interface Sci 2024; 653:1326-1338. [PMID: 37801843 DOI: 10.1016/j.jcis.2023.09.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Development of the hydrogen economy requires the design of catalysts that increase the rate of the accompanying sluggish kinetic oxygen evolution reaction (OER). This is a key process in electrochemical energy conversion and storage, such as water splitting and metal-air batteries. The OER needs high overpotential and typically expensive precious metal-based catalysts. Therefore, designing low-cost and efficient electrocatalysts for OER is of paramount importance. In addition to focusing on the number of active sites or high specific surface area, the correlation between catalyst particle shape and performance should be considered. This work presents an electrocatalytic activity comparison of cobalt-containing carbons with different morphologies in the OER process. Employing metal-organic frameworks as carbon and metal precursors, the materials in the shape of polyhedrons, needles, unique spherical hedgehogs, and sea urchins were obtained. The effect of MOF template infiltration with additional carbon source on the physicochemical properties of electrocatalysts was also examined. The furfuryl alcohol-impregnated needle-shaped particles were characterized by a high content of cobalt active sites, surrounded by nitrogen-containing graphite layers. Electrochemical tests confirmed their best activity (overpotential 317 mV@10 mA/cm2), long stability (up to 20 h), as well as low reagents diffusion limitations (Tafel slope 57 mV/dec up to 24 mA/cm2). The vertically aligned structure of the catalyst contributed to improved detachment of the oxygen bubbles produced.
Collapse
Affiliation(s)
- Aleksander Ejsmont
- Adam Mickiewicz University, Faculty of Chemistry, Department of Chemical Technology, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Termeh Darvishzad
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Słowik
- Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Pawel Stelmachowski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Joanna Goscianska
- Adam Mickiewicz University, Faculty of Chemistry, Department of Chemical Technology, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Ejsmont A, Kadela K, Grzybek G, Darvishzad T, Słowik G, Lofek M, Goscianska J, Kotarba A, Stelmachowski P. Speciation of Oxygen Functional Groups on the Carbon Support Controls the Electrocatalytic Activity of Cobalt Oxide Nanoparticles in the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5148-5160. [PMID: 36657620 PMCID: PMC9906611 DOI: 10.1021/acsami.2c18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The effective use of the active phase is the main goal of the optimization of supported catalysts. However, carbon supports do not interact strongly with metal oxides, thus, oxidative treatment is often used to enhance the number of anchoring sites for deposited particles. In this study, we set out to investigate whether the oxidation pretreatment of mesoporous carbon allows the depositing of a higher loading and a more dispersed cobalt active phase. We used graphitic ordered mesoporous carbon obtained by a hard-template method as active phase support. To obtain different surface concentrations and speciation of oxygen functional groups, we used a low-temperature oxygen plasma. The main methods used to characterize the studied materials were X-ray photoelectron spectroscopy, transmission electron microscopy, and electrocatalytic tests in the oxygen evolution reaction. We have found that the oxidative pretreatment of mesoporous carbon influences the speciation of the deposited cobalt oxide phase. Moreover, the activity of the electrocatalysts in oxygen evolution is positively correlated with the relative content of the COO-type groups and negatively correlated with the C═O-type groups on the carbon support. Furthermore, the high relative content of COO-type groups on the carbon support is correlated with the presence of well-dispersed Co3O4 nanoparticles. The results obtained indicate that to achieve a better dispersed and thus more catalytically active material, it is more important to control the speciation of the oxygen functional groups rather than to maximize their total concentration.
Collapse
Affiliation(s)
- Aleksander Ejsmont
- Department
of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Karolina Kadela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Gabriela Grzybek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Termeh Darvishzad
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Grzegorz Słowik
- Department
of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031Lublin, Poland
| | - Magdalena Lofek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Joanna Goscianska
- Department
of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Andrzej Kotarba
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Paweł Stelmachowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| |
Collapse
|
3
|
Nazarkina ZK, Savostyanova TA, Chelobanov BP, Romanova IV, Simonov PA, Kvon RI, Karpenko AA, Laktionov PP. Activated Carbon for Drug Delivery from Composite Biomaterials: The Effect of Grinding on Sirolimus Binding and Release. Pharmaceutics 2022; 14:pharmaceutics14071386. [PMID: 35890281 PMCID: PMC9325110 DOI: 10.3390/pharmaceutics14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Activated carbon (AC) could be potentially useful as a drug carrier in fiber polymer scaffolds destined for prolonged drug delivery. To be introduced, AC must be ground into smaller-sized particles to be introduced in scaffolds, as most biocompatible scaffolds consist of fibers with a diameter of less than 1 µm. In this study, the adsorption of sirolimus (SRL) from phosphate-buffered saline (PBS) solution and blood plasma (BP) onto AC of AX-21 type, as well as the release of SRL from AC depending on its fragmentation, were studied. Two-stage grinding of the AC, first with a ball mill, and then with a bead mill, was performed. Grinding with a bead mill was performed either in water or in polyvinylpyrrolidone to prevent aggregation of AC particles. Dynamic light scattering and scanning electron microscopy (SEM) demonstrated that the size of the particles obtained after grinding with a ball mill was 100–10,000 nm, and after grinding with a bead mill, 100–300 nm. Adsorption in PBS was significantly higher than in BP for all fractions, and depended on SRL concentration. The fraction obtained after grinding with a ball mill showed maximal SRL adsorption, both in PBS and BP, and slow SRL release, in comparison with other fractions. The 100–300 nm AC fractions were able to adsorb and completely release SRL into BP, in contrast to other fractions, which strongly bound a significant amount of SRL. The data obtained are to be used for controlled SRL delivery, and thus in the modification of drug delivery in biological media.
Collapse
Affiliation(s)
- Zhanna K. Nazarkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
- Correspondence: ; Tel.: +7-(383)-363-51-44
| | - Tatyana A. Savostyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
| | - Boris P. Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
| | - Irina V. Romanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
| | - Pavel A. Simonov
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Ren I. Kvon
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Andrey A. Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia;
| |
Collapse
|
4
|
Wdowiak K, Rosiak N, Tykarska E, Żarowski M, Płazińska A, Płaziński W, Cielecka-Piontek J. Amorphous Inclusion Complexes: Molecular Interactions of Hesperidin and Hesperetin with HP-Β-CD and Their Biological Effects. Int J Mol Sci 2022; 23:ijms23074000. [PMID: 35409360 PMCID: PMC9000012 DOI: 10.3390/ijms23074000] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed at obtaining hesperidin (Hed) and hesperetin (Het) systems with HP-β-CD by means of the solvent evaporation method. The produced systems were identified using infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC). Moreover, in silico docking and molecular dynamics studies were performed to assess the most preferable site of interactions between tested compounds and HP-β-CD. The changes of physicochemical properties (solubility, dissolution rate, and permeability) were determined chromatographically. The impact of modification on biological activity was tested in an antioxidant study as well as with regards to inhibition of enzymes important in pathogenesis of neurodegenerative diseases. The results indicated improvement in solubility over 1000 and 2000 times for Hed and Het, respectively. Permeability studies revealed that Hed has difficulties in crossing biological membranes, in contrast with Het, which can be considered to be well absorbed. The improved physicochemical properties influenced the biological activity in a positive manner by the increase in inhibitory activity on the DPPH radical and cholinoesterases. To conclude the use of HP-β-CD as a carrier in the formation of an amorphous inclusion complex seems to be a promising approach to improve the biological activity and bioavailability of Hed and Het.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Anita Płazińska
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
- Correspondence:
| |
Collapse
|
5
|
Ejsmont A, Stasiłowicz-Krzemień A, Ludowicz D, Cielecka-Piontek J, Goscianska J. Synthesis and Characterization of Nanoporous Carbon Carriers for Losartan Potassium Delivery. MATERIALS 2021; 14:ma14237345. [PMID: 34885515 PMCID: PMC8658076 DOI: 10.3390/ma14237345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
Losartan potassium is most commonly used for the treatment of hypertension. In recent years, new applications of this drug have emerged, encouraging the design of novel nanoporous carriers for its adsorption and release. The purpose of this study was to synthesize ordered mesoporous carbon vehicles via a soft-templating method altered with the use of nitrogen precursors and via a hard-templating method followed by chitosan functionalization. As a result, the materials obtained differed in nitrogen content as well as in the number of total surface functional groups. The impact of the modification on the physicochemical properties of carbon carriers and their interaction with losartan potassium during adsorption and release processes was examined. The materials were characterized by various morphologies, specific surface areas (101–1180 m2 g−1), and the amount of acidic/basic oxygen-containing functional groups (1.26–4.27 mmol g−1). These features, along with pore sizes and volumes, had a key effect on the sorption capacity of carbon carriers towards losartan potassium (59–161 mg g−1). Moreover, they contributed to the differential release of the drug (18.56–90.46%). Losartan potassium adsorption onto the surface of carbonaceous materials was mainly based on the formation of hydrogen bonds and π–π interactions and followed the Langmuir type isotherm. It has been shown that the choice of the method of carbon carriers’ synthesis and their modification allows for the precise control of the kinetics of the losartan potassium release from their surface, resulting in rapid or sustained drug liberation.
Collapse
Affiliation(s)
- Aleksander Ejsmont
- Faculty of Chemistry, Department of Chemical Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Anna Stasiłowicz-Krzemień
- Faculty of Pharmacy, Department of Pharmacognosy, Poznań University of Medical Sciences, Święcickiego 4, 61-781 Poznań, Poland; (A.S.-K.); (D.L.)
| | - Dominika Ludowicz
- Faculty of Pharmacy, Department of Pharmacognosy, Poznań University of Medical Sciences, Święcickiego 4, 61-781 Poznań, Poland; (A.S.-K.); (D.L.)
| | - Judyta Cielecka-Piontek
- Faculty of Pharmacy, Department of Pharmacognosy, Poznań University of Medical Sciences, Święcickiego 4, 61-781 Poznań, Poland; (A.S.-K.); (D.L.)
- Correspondence: (J.C.-P.); (J.G.)
| | - Joanna Goscianska
- Faculty of Chemistry, Department of Chemical Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Correspondence: (J.C.-P.); (J.G.)
| |
Collapse
|
6
|
Goscianska J, Olejnik A, Ejsmont A, Galarda A, Wuttke S. Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres. J Colloid Interface Sci 2020; 586:673-682. [PMID: 33223239 DOI: 10.1016/j.jcis.2020.10.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Paracetamol is the most commonly used antipyretic and analgesic drug in the world. The key challenge in paracetamol therapy is associated with the frequency of the dosing. Depending on the gastric filling within 10-20 min paracetamol is released and rapidly absorbed from the gastrointestinal tract. Therefore, it must be taken three or four times a day. To address the dose challenge it is desirable that the paracetamol release profile follows the zero-order kinetic model (constant rate of drug release per unit time). This goal can be achieved by using a suitable porous carrier system. Herein, non-toxic wrinkled mesoporous carbons with unique morphology were synthesized via the hard template method as new carriers for paracetamol. These particles can precisely modulate the release of paracetamol over 24 h in a simulated gastric fluid according to the zero-order kinetic model completely eliminating the initial burst release. Overall, these systems could significantly enhance the bioavailability of paracetamol and prolong its therapeutic effect in numerous diseases such as cold, flu, COVID-19, and severe pain.
Collapse
Affiliation(s)
- Joanna Goscianska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Anna Olejnik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aleksandra Galarda
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|