1
|
Zhao H, Xu C, Wang T, Liu J. Biomimetic Construction of Artificial Selenoenzymes. Biomimetics (Basel) 2023; 8:biomimetics8010054. [PMID: 36810385 PMCID: PMC9944854 DOI: 10.3390/biomimetics8010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Selenium exists in the form of selenocysteines in selenoproteins and plays a pivotal role in the catalytic process of the antioxidative enzymes. In order to study the structural and functional properties of selenium in selenoproteins, explore the significance of the role of selenium in the fields of biology and chemistry, scientists conducted a series of artificial simulations on selenoproteins. In this review, we sum up the progress and developed strategies in the construction of artificial selenoenzyme. Using different mechanisms from different catalytic angles, selenium-containing catalytic antibodies, semi-synthetic selenonezyme, and the selenium-containing molecularly imprinted enzymes have been constructed. A variety of synthetic selenoenzyme models have been designed and constructed by selecting host molecules such as cyclodextrins, dendrimers, and hyperbranched polymers as the main scaffolds. Then, a variety of selenoprotein assemblies as well as cascade antioxidant nanoenzymes were built by using electrostatic interaction, metal coordination, and host-guest interaction. The unique redox properties of selenoenzyme glutathione peroxidase (GPx) can be reproduced.
Collapse
|
2
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
3
|
Golestanzadeh M, Ebrahimpour K, Daniali SS, Zarean E, Yazdi M, Basirat Z, Goodarzi-Khoigani M, Kelishadi R. Association between parabens concentrations in human amniotic fluid and the offspring birth size: A Sub-study of the PERSIAN birth cohort. ENVIRONMENTAL RESEARCH 2022; 212:113502. [PMID: 35609656 DOI: 10.1016/j.envres.2022.113502] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 05/22/2023]
Abstract
OBJECTIVE Parabens are extensively used, and cause widespread exposure of the general population including pregnant women and developing fetuses to these pollutants. In this study, we aimed to investigate the association between the maternal exposure of parabens to study their transfer passed through the placental barrier to amniotic fluid; the second objective was to determine the association of paraben concentration in the amniotic fluid with the offspring birth size. METHODS This cross-sectional study was conducted from June 2019 to March 2021 in Isfahan, Iran. Samples of amniotic fluid were collected as set from 128 pregnant women at Cesarean section. The amniotic fluid concentrations of four parabens including methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) were determined using gas chromatography tandem mass spectroscopy (GC-Mass). RESULTS The pointed parabens were extracted from yielded clear supernatant using a dispersive liquid-liquid microextraction (DLLME) method. Four paraben derivatives including MP (normal: 0.68 ± 0.7; overweight: 1.40 ± 1.76; obese: 0.30 ± 0.26; p-value: 0.275), EP (normal: 0.14 ± 0.09; overweight: 0.72 ± 0.72; obese: 0.38 ± 0.05; p-value: 0.434), PP (normal: 0.05 ± 0.05; overweight: 0.06 ± 0.06; obese: 0.20 ± 0.17; p-value: 0.770), and BP (normal: 2.89 ± 1.80; overweight: 3.89 ± 6.48; obese: 5.80 ± 7.56; p-value: 0.341) were simultaneously detected in samples of maternal amniotic fluid using GC-MS. In 92.2% (n = 118) of pregnant women, the paraben derivatives (MP, EP, PP, BP) were detected. We found that considerable levels of MP, EP, PP, and BP existed in 22.6% (n = 29), 21.9% (n = 28), 29.7% (n = 38), and 85.2% (n = 109) of samples, respectively. In addition, the correlation between paraben concentrations in amniotic fluid and birth size was investigated. The results showed that an inverse significant association between MP and head circumference, chest, hip, and arm circumference. While a positive correlation between MP and height of newborn was observed. Similar correlations were observed for EP and weight, height, head circumference, chest, hip, and arm. CONCLUSION The current study indicated that parabens have been detected in amniotic fluid samples and a strong/possible correlation between exposure of pregnant women to parabens and the birth size of newborns.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Zarean
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Yazdi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Basirat
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Goodarzi-Khoigani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Mohd Hir ZA, Abdullah AH. Hybrid polymer-based photocatalytic materials for the removal of selected endocrine disrupting chemicals (EDCs) from aqueous media: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Fabrication of magnetic covalent organic framework for effective and selective solid-phase extraction of propylparaben from food samples. Food Chem 2022; 386:132843. [PMID: 35381536 DOI: 10.1016/j.foodchem.2022.132843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Efficient magnetic solid phase extraction using crystalline porous polymers can find important applications in food safety. Herein, the core-shell Fe3O4@COFs nanospheres were synthesized by one-pot method and characterized in detail. The porous COF shell with large surface area had fast and selective adsorption for propylparaben via π-π, hydrogen bonding and hydrophobic interactions. The extraction and desorption parameters were evaluated in detail. Under the optimized conditions, the extraction equilibrium was reached only in 5 min, the maximum adsorption capacity for propylparaben was 500 mg g-1 and the proposed Fe3O4@DhaTab-based-MSPE-HPLC-UV method afforded good linearity (4-20000 μg mL-1) with R2 (0.997), low limits of detection (0.55 μg L-1) and limits of quantification (1.5 μg L-1). Furthermore, the developed method was applied to determine propylparaben in soft drinks with the recoveries (97.0-98.3%) and relative standard deviations (0.61 to 3.75%). These results revealed the potential of Fe3O4@DhaTab as efficient adsorbents for parabens in food samples.
Collapse
|
6
|
Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P. Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Mikrochim Acta 2022; 189:340. [PMID: 35995957 DOI: 10.1007/s00604-022-05444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 μg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 μg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.
Collapse
Affiliation(s)
- Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025. .,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025.
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Quan-Wen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Xin-Yan Peng
- Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, People's Republic of China, 264005
| | - Ping Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| |
Collapse
|
7
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|