Adamu M, Ibrahim YE, Al-Atroush ME, Alanazi H. Mechanical Properties and Durability Performance of Concrete Containing Calcium Carbide Residue and Nano Silica.
MATERIALS 2021;
14:ma14226960. [PMID:
34832358 PMCID:
PMC8622175 DOI:
10.3390/ma14226960]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Calcium carbide residue (CCR) is the end-product of production of acetylene gas for the applications such as welding, lighting, ripening of fruits, and cutting of metals. Due to its high pH value, disposing of CCR as a landfill increases the alkalinity of the environment. Therefore, due to its high calcium content, CCR is mostly blended with other pozzolanic materials, together with activators as binders in the cement matrix. In this study, cement was partially substituted using CCR at 0%, 7.5%, 15%, 22.5% and 30% by weight replacement, and nano silica (NS) was utilized as an additive by weight of binder materials at 0%, 1%, 2%, 3% and 4%. The properties considered were the slump, the compressive strength, the flexural strength, the splitting tensile strength, the modulus of elasticity, and the water absorption capacity. The microstructural properties of the concrete were also examined through FESEM and XRD analysis. The results showed that both CCR and NS increase the concrete's water demand, hence reducing its workability. Mixes containing up to 15% CCR only showed improved mechanical properties. The combination of CCR and NS significantly improved the mechanical properties and decreased the concrete's water absorption through improved pozzolanic reactivity as verified by the FESEM and XRD results. Furthermore, the microstructure of the concrete was explored, and the pores were refined by the pozzolanic reaction products. The optimum mix combination was obtained by replacing 15% cement using CCR and the addition of 2% NS by weight of cementitious materials. Therefore, using a hybrid of CCR and NS in concrete will result in reduction of cement utilization in concrete, leading to improved environmental sustainability and economy.
Collapse