1
|
Raffaini G. Adsorption and Self-Aggregation of Chiral [5]-Aza[6]helicenes on DNA Architecture: A Molecular Dynamics Study. J Phys Chem B 2023; 127:8285-8295. [PMID: 37751596 PMCID: PMC10561140 DOI: 10.1021/acs.jpcb.3c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Helicenes are an extremely interesting class of conjugated molecules without asymmetric carbon atoms but with intrinsic chirality. These molecules can interact with double-stranded chiral B-DNA architecture, modifying after their adsorption the hydrophilicity exposed by DNA to the biological environment. They also form ordered structures due to self-aggregation processes with possible different light emissions. Following initial studies based on molecular mechanics (MM) and molecular dynamics (MD) simulations regarding the adsorption and self-aggregation process of 5-aza[5]helicenes on double-stranded B-DNA, this theoretical work investigates the interaction between (M)- and (P)-5-aza[6]helicenes with double-helix DNA. Initially, the interaction of the pure single enantiomer with DNA is studied. Possible preferential absorption in minor or major grooves can occur. Afterward, the interaction of enantiopure compounds (M)- and (P)-5-aza[6]helicenes, potentially occurring in a racemic mixture at different concentrations, was investigated, taking into consideration both competitive adsorption on DNA and the possible helicenes' self-aggregation process. The structural selectivity of DNA binding and the role of helicene concentration in adsorption and the self-aggregation process are interesting. In addition, the ability to form ordered structures on DNA that follow its chiral architecture, thanks to favorable van der Waals intermolecular interactions, is curious.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy
- INSTM,
National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
| |
Collapse
|
2
|
Vacek J, Zatloukalova M, Bartheldyova E, Reha D, Minofar B, Bednarova K, Renciuk D, Coufal J, Fojta M, Zadny J, Gessini A, Rossi B, Storch J, Kabelac M. Hexahelicene DNA-binding: Minor groove selectivity, semi-intercalation and chiral recognition. Int J Biol Macromol 2023; 250:125905. [PMID: 37487990 DOI: 10.1016/j.ijbiomac.2023.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
In this contribution, we focused on a fundamental study targeting the interaction of water-soluble [6]helicene derivative 1 (1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide) with double-stranded (ds) DNA. A synthetic 30-base pair duplex, plasmid, chromosomal calf thymus and salmon DNA were investigated using electrochemistry, electrophoresis and spectroscopic tools supported by molecular dynamics (MD) and quantum mechanical approaches. Both experimental and theoretical work revealed the minor groove binding of 1 to the dsDNA. Both the positively charged imidazole ring and hydrophobic part of the side chain contributed to the accommodation of 1 into the dsDNA structure. Neither intercalation into the duplex DNA nor the stable binding of 1 to single-stranded DNA were found in topoisomerase relaxation experiments with structural components of 1, i.e. [6]helicene (2) and 1-butyl-3-methylimidazolium bromide (3), nor by theoretical calculations. Finally, the binding of optically pure enantiomers (P)-1 and (M)-1 was studied using circular dichroism spectroscopy, isothermal titration calorimetry and UV Resonance Raman (UVRR) methods. Using MD and quantum mechanical methods, minor groove and semi-intercalation were proposed for compound 1 as the predominant binding modes. From the UVRR findings, we also can conclude that 1 tends to preferentially interact with adenine and guanine residues in the structure of dsDNA.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | | | - David Reha
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Babak Minofar
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Klara Bednarova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Daniel Renciuk
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jaroslav Zadny
- Institute of Chemical Process Fundamentals of the AS CR, v.v.i., Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Alessandro Gessini
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 - Km 163.5, Basovizza, Trieste I-34149, Italy
| | - Barbara Rossi
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 - Km 163.5, Basovizza, Trieste I-34149, Italy
| | - Jan Storch
- Institute of Chemical Process Fundamentals of the AS CR, v.v.i., Rozvojova 135, 165 02 Prague 6, Czech Republic.
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
3
|
Váňa L, Jakubec M, Sýkora J, Císařová I, Žádný J, Storch J, Církva V. Synthesis of Aza[ n]helicenes ( n = 4-7) via Photocyclodehydrochlorination of 1-Chloro- N-aryl-2-naphthamides. J Org Chem 2022; 87:7150-7166. [PMID: 35549349 DOI: 10.1021/acs.joc.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of aza[n]helicenes (n = 4-7) was synthesized using a photocyclodehydrochlorination of 1-chloro-N-aryl-2-naphthamides as a general synthetic procedure introducing the nitrogen atom to the third ring of the helicene framework. The effect of the nitrogen presence in the helicene skeleton on the physicochemical properties of the prepared aza[n]helicenes was studied and compared to those of the parent carbo-analogues. The insertion of a nitrogen atom into the outer edge of the helicene molecule has a severe impact on certain physicochemical properties such as optical rotation, electrostatic potentials, and intermolecular interactions. On the other hand, some other properties such as UV/vis, fluorescence, and phosphorescence spectra remained almost unaffected when compared to the parent carbohelicenes. A nitrogen atom can be also used for further derivatization, which can lead to further modification of helicene properties, as manifested here in the fluorescence changes induced by protonation.
Collapse
Affiliation(s)
| | | | | | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
4
|
Raffaini G, Catauro M. Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study. MATERIALS 2022; 15:ma15082759. [PMID: 35454451 PMCID: PMC9028380 DOI: 10.3390/ma15082759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Biomaterial-based drug delivery systems for a controlled drug release are drawing increasing attention thanks to their possible pharmaceutical and biomedical applications. It is important to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO2 surface and the ketoprofen molecules, an anti-inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT-IR), the interaction between the SiO2 amorphous surface and two percentages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti-inflammatory agents for release into the human body.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy
- Correspondence: (G.R.); (M.C.)
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
- Correspondence: (G.R.); (M.C.)
| |
Collapse
|