1
|
Jiao Y, Okada M, Nutan B, Nagaoka N, Bikharudin A, Musa R, Matsumoto T. Fabrication of a Fish-Bone-Inspired Inorganic-Organic Composite Membrane. Polymers (Basel) 2023; 15:4190. [PMID: 37896434 PMCID: PMC10611054 DOI: 10.3390/polym15204190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP-gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds. Finally, as a result of optimizing the compositional ratio of CaP filler and gelatin hydrogel, a CaP filler content of 40% provided the optimal mechanical properties of toughness and stiffness similar to fish bone. Due to the rigidity, flexibility, and ease of shape control of the composite membrane materials, this membrane could be applied as a guided bone regeneration (GBR) membrane.
Collapse
Affiliation(s)
- YuYang Jiao
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Bhingaradiya Nutan
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Ahmad Bikharudin
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Randa Musa
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| |
Collapse
|
2
|
Brimsholm M, Fjelldal PG, Hansen T, Trangerud C, Knutsen GM, Asserson CF, Koppang EO, Bjørgen H. Anatomical and pathological characteristics of ribs in the Atlantic salmon (Salmo salar L.) and its relevance to soft tissue changes. Anat Histol Embryol 2023; 52:421-436. [PMID: 36637047 DOI: 10.1111/ahe.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Studies on the anatomical and pathological characteristics of ribs in farmed Atlantic salmon (Salmo salar L.) are warranted due to their possible association with red and melanized focal changes (RFC and MFC) in the fillet, a major quality and animal welfare concern. In this work, we provide an anatomical description of ribs based on radiographical and histological analyses. We also address various pathological rib changes and their association to RFC and MFC. In total, 129 fish were investigated; captured wild (n = 10) and hatchery reared (n = 119) Atlantic salmon (3.5-6.1 kg). The fish were selected based on the macroscopic presence of RFC, MFC or no changes (controls). Radiographic results revealed costal abnormalities in all fish groups. By histological investigations of the variations herein, our results provide new insight into the anatomical characteristics including vascularization within the ribs; a potential site for haemorrhage following costal fractures. Costal fractures were detected by radiology in 40 of 129 samples (RFC: 38.4%, MFC: 47.2%, controls: 9.5 %). A statistically significant association was found between costal fractures and red (p = 0.007) and melanized changes (p = 0.000). However, red and melanized changes were also observed in samples with no costal fractures (n = 45), indicating that also other factors influence the development of RFC/MFC.
Collapse
Affiliation(s)
- Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Cathrine Trangerud
- Unit of Radiology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Zhao X, Bi H. MALDI-TOF mass spectrometry applied for animal species identification based on bone samples. Analyst 2022; 147:1128-1134. [DOI: 10.1039/d1an02163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Animal bones could be differentiated by mild acid-based hydrolysis, MALDI-TOF MS and PCA, holding a great potential for animal species monitoring in raw fish and meats, and for judicial authentication.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| |
Collapse
|