1
|
Schweitzer L, Schoon J, Bläß N, Huesker K, Neufend JV, Siemens N, Bekeschus S, Schlüter R, Schneider P, Uhlmann E, Wassilew G, Schulze F. Ultraviolet laser induced periodic surface structures positively influence osteogenic activity on titanium alloys. Front Bioeng Biotechnol 2024; 12:1462232. [PMID: 39530059 PMCID: PMC11551024 DOI: 10.3389/fbioe.2024.1462232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objective Endoprostheses might fail due to complications such as implant loosening or periprosthetic infections. The surface topography of implant materials is known to influence osseointegration and attachment of pathogenic bacteria. Laser-Induced Periodic Surface Structures (LIPSS) can improve the surface topography of orthopedic implant materials. In this preclinical in vitro study, laser pulses with a wavelength in the ultraviolet (UV) spectrum were applied for the generation of LIPSS to positively influence formation of extracellular matrix by primary human Osteoblasts (hOBs) and to reduce microbial biofilm formation in vitro. Methods Laser machining was employed for generating UV-LIPSS on sample disks made of Ti6Al4V and Ti6Al7Nb alloys. Sample disks with polished surfaces were used as controls. Scanning electron microscopy was used for visualization of surface topography and adherent cells. Metal ion release and cellular metal levels were investigated by inductively coupled plasma mass spectrometry. Cell culture of hOBs on sample disks with and without UV-LIPSS surface treatments was performed. Cells were investigated for their viability, proliferation, osteogenic function and cytokine release. Biofilm formation was facilitated by seeding Staphylococcus aureus on sample disks and quantified by wheat germ agglutinin (WGA) staining. Results UV-LIPSS modification results in topographies with a periodicity of 223 nm ≤ λ ≤ 278 nm. The release of metal ions was found increased for UV-LIPSS on Ti6Al4V and decreased for UV-LIPSS on Ti6Al7Nb, while cellular metal levels remain unaffected. Cellular adherence was decreased for hOBs on UV-LIPSS Ti6Al4V when compared to controls while proliferation rate was unaffected. Metabolic activity was lower on UV-LIPSS Ti6Al7Nb when compared to the control. Alkaline phosphatase activity was upregulated for hOBs grown on UV-LIPSS on both alloys. Less pro-inflammatory cytokines were released for cells grown on UV-LIPSS Ti6Al7Nb when compared to polished surfaces. WGA signals were significantly lower on UV-LIPSS Ti6Al7Nb indicating reduced formation of a S. aureus biofilm. Conclusion Our results suggest that UV-LIPSS texturing of Ti6Al7Nb positively influence bone forming function and cytokine secretion profile of hOBs in vitro. In addition, our results indicate diminished biofilm formation on UV-LIPSS treated Ti6Al7Nb surfaces. These effects might prove beneficial in the context of long-term arthroplasty outcomes.
Collapse
Affiliation(s)
- Luiz Schweitzer
- Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Niklas Bläß
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Huesker
- Endocrinology and Immunology Department, Institute for Medical Diagnostics, Berlin, Germany
| | - Janine V. Neufend
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | | | - Eckart Uhlmann
- Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany
- Institute for Machine Tools and Factory Management, Technische Universität Berlin, Berlin, Germany
| | - Georgi Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Schulze F, Perino G, Rakow A, Wassilew G, Schoon J. Noninfectious tissue interactions at periprosthetic interfaces. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:186-195. [PMID: 36853395 DOI: 10.1007/s00132-023-04352-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 03/01/2023]
Abstract
The success of hip arthroplasty is based on modern materials in addition to the continuous development of surgical techniques and clinical experience gained over six decades. The biocompatible implant materials used in hip arthroplasty can be textured or coated with biomimetic surfaces to ensure durable component ingrowth and moderate host response. Material integrity plays a critical role in the durability of the stable interface between implant components and periprosthetic tissues. Inflammation at the interfaces due to the release of degradation products from the implant materials is one of the causes of hip arthroplasty failure. This review summarizes the implant materials currently used in hip arthroplasty, their preclinical testing and the postoperative neogenesis of periprosthetic tissues, and the interactions of periprosthetic bone and the implant materials at the periprosthetic interfaces.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, F.-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Giorgio Perino
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, F.-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Anastasia Rakow
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, F.-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Georgi Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, F.-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, F.-Sauerbruch-Straße, 17475, Greifswald, Germany
| |
Collapse
|
3
|
Aceti DM, Filipov E, Angelova L, Sotelo L, Fontanot T, Yousefi P, Christiansen S, Leuchs G, Stanimirov S, Trifonov A, Buchvarov I, Daskalova A. Single-Step Process for Titanium Surface Micro- and Nano-Structuring and In Situ Silver Nanoparticles Formation by Ultra-Short Laser Patterning. MATERIALS 2022; 15:ma15134670. [PMID: 35806794 PMCID: PMC9267125 DOI: 10.3390/ma15134670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.
Collapse
Affiliation(s)
- Dante Maria Aceti
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Lamborghini Sotelo
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Innovations-Institut für Nanotechnologie und Korrelative Mikroskopie gGmbH Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Tommaso Fontanot
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Peyman Yousefi
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Silke Christiansen
- Innovations-Institut für Nanotechnologie und Korrelative Mikroskopie gGmbH Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Gerd Leuchs
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Max-Planck-Institut für die Physik des Lichts, 91058 Erlangen, Germany
| | - Stanislav Stanimirov
- Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anton Trifonov
- Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Ivan Buchvarov
- Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
4
|
Influence of Femtosecond Laser Modification on Biomechanical and Biofunctional Behavior of Porous Titanium Substrates. MATERIALS 2022; 15:ma15092969. [PMID: 35591307 PMCID: PMC9099494 DOI: 10.3390/ma15092969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
Bone resorption and inadequate osseointegration are considered the main problems of titanium implants. In this investigation, the texture and surface roughness of porous titanium samples obtained by the space holder technique were modified with a femtosecond Yb-doped fiber laser. Different percentages of porosity (30, 40, 50, and 60 vol.%) and particle range size (100–200 and 355–500 μm) were compared with fully-dense samples obtained by conventional powder metallurgy. After femtosecond laser treatment the formation of a rough surface with micro-columns and micro-holes occurred for all the studied substrates. The surface was covered by ripples over the micro-metric structures. This work evaluates both the influence of the macro-pores inherent to the spacer particles, as well as the micro-columns and the texture generated with the laser, on the wettability of the surface, the cell behavior (adhesion and proliferation of osteoblasts), micro-hardness (instrumented micro-indentation test, P–h curves) and scratch resistance. The titanium sample with 30 vol.% and a pore range size of 100–200 μm was the best candidate for the replacement of small damaged cortical bone tissues, based on its better biomechanical (stiffness and yield strength) and biofunctional balance (bone in-growth and in vitro osseointegration).
Collapse
|
5
|
Hadzik J, Kubasiewicz-Ross P, Simka W, Gębarowski T, Barg E, Cieśla-Niechwiadowicz A, Trzcionka Szajna A, Szajna E, Gedrange T, Kozakiewicz M, Dominiak M, Jurczyszyn K. Fractal Dimension and Texture Analysis in the Assessment of Experimental Laser-Induced Periodic Surface Structures (LIPSS) Dental Implant Surface-In Vitro Study Preliminary Report. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2713. [PMID: 35454406 PMCID: PMC9027964 DOI: 10.3390/ma15082713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Laser-induced periodic surface structures (LIPSS) are the sub-wavelength periodic nanostructures generated by the femtosecond laser. Implant topography and its nanostructural changes can be important for biomedical applications. In order to compare the surface topography of different implants, appropriate mathematical and physical descriptive methods should be provided. The aim of the study was to evaluate the experimental LIPSS-based-Low Spatial Frequency LIPSS (LSFL) dental implant surfaces. Novel methods of surface analysis, such as Fractal Dimension Analysis and Texture Analysis, were compared to the standard surface roughness evaluation. Secondary, cell viability, and attachment tests were applied in order to evaluate the biological properties of the new titanium surface and to compare their correlation with the physical properties of the new surfaces. A Normal Human Dermal Fibroblast (NHDF) cytotoxicity test did not show an impact on the vitality of the cells. Our study has shown that the laser LIPSS implant surface modifications significantly improved the cell adhesion to the tested surfaces. We observed a strong correlation of adhesion and the growth of cells on the tested surface, with an increase in implant surface roughness with the best results for the moderately rough (2 μm) surfaces. Texture and fractal dimension analyses are promising methods to evaluate dental implants with complex geometry.
Collapse
Affiliation(s)
- Jakub Hadzik
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| | - Paweł Kubasiewicz-Ross
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Aneta Cieśla-Niechwiadowicz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | | | | | - Tomasz Gedrange
- Department of Orthodontics, TU Dresden, 01062 Dresden, Germany
| | - Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Faculty of Military Medicine, Medical University of Lodz, 90-151 Łódź, Poland
| | - Marzena Dominiak
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| | - Kamil Jurczyszyn
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
6
|
Navarro P, Olmo A, Giner M, Rodríguez-Albelo M, Rodríguez Á, Torres Y. Electrical Impedance of Surface Modified Porous Titanium Implants with Femtosecond Laser. MATERIALS 2022; 15:ma15020461. [PMID: 35057181 PMCID: PMC8779557 DOI: 10.3390/ma15020461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 01/25/2023]
Abstract
The chemical composition and surface topography of titanium implants are essential to improve implant osseointegration. The present work studies a non-invasive alternative of electrical impedance spectroscopy for the characterization of the macroporosity inherent to the manufacturing process and the effect of the surface treatment with femtosecond laser of titanium discs. Osteoblasts cell culture growths on the titanium surfaces of the laser-treated discs were also studied with this method. The measurements obtained showed that the femtosecond laser treatment of the samples and cell culture produced a significant increase (around 50%) in the absolute value of the electrical impedance module, which could be characterized in a wide range of frequencies (being more relevant at 500 MHz). Results have revealed the potential of this measurement technique, in terms of advantages, in comparison to tiresome and expensive techniques, allowing semi-quantitatively relating impedance measurements to porosity content, as well as detecting the effect of surface modification, generated by laser treatment and cell culture.
Collapse
Affiliation(s)
- Paula Navarro
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain;
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (M.R.-A.); (Y.T.)
| | - Alberto Olmo
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain;
- Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio s/n, 41092 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556835
| | - Mercè Giner
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, Av. Doctor Fedriani s/n, 41009 Sevilla, Spain;
| | - Marleny Rodríguez-Albelo
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (M.R.-A.); (Y.T.)
| | - Ángel Rodríguez
- Escuela Politécnica Superior, Universidad da Coruña, Calle Mendizábal s/n, 15403 Ferrol, Spain;
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (M.R.-A.); (Y.T.)
| |
Collapse
|
7
|
Shelly S, Liraz Zaltsman S, Ben-Gal O, Dayan A, Ganmore I, Shemesh C, Atrakchi D, Garra S, Ravid O, Rand D, Israelov H, Alon T, Lichtenstein G, Sharabi S, Last D, Gosselet F, Rosen V, Burstein G, Friedlander A, Harel R, Vogel G, Schnaider Beeri M, Mardor Y, Lampl Y, Fleminger G, Cooper I. Potential neurotoxicity of titanium implants: Prospective, in-vivo and in-vitro study. Biomaterials 2021; 276:121039. [PMID: 34352627 DOI: 10.1016/j.biomaterials.2021.121039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Titanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly internalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic.
Collapse
Affiliation(s)
- Shahar Shelly
- Department of Neurology, College of Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel; Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Ofir Ben-Gal
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Avraham Dayan
- The Shmunis School of Biomedicine and Cancer Research, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Sharif Garra
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Tayir Alon
- Neurology Department, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel
| | | | - Shirley Sharabi
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Fabien Gosselet
- Univ. Artois, UR 2465, Blood-brain Barrier Laboratory (LBHE), F-62300 Lens, France
| | - Vasiliy Rosen
- The ICP Unit, The Core Facility of the Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | | | - Alon Friedlander
- Spine Surgery Division, Department of Orthopedics, Sheba Medical Center, Israel
| | - Ran Harel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Spine Surgery Division, Department of Neurosurgery, Sheba Medical Center, Israel
| | - Guy Vogel
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel; Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yael Mardor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Yair Lampl
- Department of Neurology, Wolfson Medical Center, Holon, Israel
| | - Gideon Fleminger
- The Shmunis School of Biomedicine and Cancer Research, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|