1
|
Gupta DS, Suares D. Uncovering the Emerging Prospects of Lipid-based Nanoparticulate Vehicles in Lung Cancer Management: A Recent Perspective. Pharm Nanotechnol 2025; 13:155-170. [PMID: 38468532 DOI: 10.2174/0122117385286781240228060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Divya Suares
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
2
|
Li Q, Lin J, Hao G, Xie A, Liu S, Tang B. Nephrotoxicity of targeted therapy used to treat lung cancer. Front Immunol 2024; 15:1369118. [PMID: 39026680 PMCID: PMC11254629 DOI: 10.3389/fimmu.2024.1369118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, especially non-small cell lung cancer. Early diagnosis and better treatment choices have already provided a more promising prognosis for cancer patients. In targeted therapy, antagonists target specific genes supporting cancer growth, proliferation and metastasis. With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents must be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. Drug-related nephrotoxicity has attracted attention when initiating cancer therapy. Our review aims to summarize the adverse renal effects caused by targeted therapy during lung cancer treatment, mainly focusing on EGFR and ALK tyrosine kinase inhibitors. Also, we discuss the possible mechanism of the side effect and provide managements to help improve the renal function in clinical practice.
Collapse
Affiliation(s)
- Qiuling Li
- Department of Nephrology, Blood Purification Center, Zhongshan People’s Hospital, Zhongshan, China
| | - Jieshan Lin
- Department of Nephrology, Blood Purification Center, Zhongshan People’s Hospital, Zhongshan, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guojun Hao
- Department of Nephrology, Blood Purification Center, Zhongshan People’s Hospital, Zhongshan, China
| | - Aihua Xie
- Department of Nephrology, Blood Purification Center, Zhongshan People’s Hospital, Zhongshan, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bin Tang
- Department of Nephrology, Blood Purification Center, Zhongshan People’s Hospital, Zhongshan, China
| |
Collapse
|
3
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Kalita H, Patowary M. Biocompatible Polymer Nano-Constructs: A Potent Platform for Cancer Theranostics. Technol Cancer Res Treat 2023; 22:15330338231160391. [PMID: 36855787 PMCID: PMC9983094 DOI: 10.1177/15330338231160391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Nano-constructs of biocompatible polymers have drawn wide attention owing to their potential as theranostics for simultaneous therapy and detection of cancer. The present mini review summarizes various nano-architectures of polymers that have been developed as theranostic agents for the simultaneous treatment and diagnosis of cancer in a single platform. Additionally, research prospects of polymeric cancer theranostics for the future have been highlighted.
Collapse
Affiliation(s)
- Himani Kalita
- Department of Chemistry, 28678Indian Institute of Technology Guwahati, Guwahati, India.,Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manoj Patowary
- School of Engineering, 560377MIT-ADT University, Pune, Maharashtra, India
| |
Collapse
|
5
|
Essa ML, Elashkar AA, Hanafy NAN, Saied EM, El-Kemary M. Dual targeting nanoparticles based on hyaluronic and folic acids as a promising delivery system of the encapsulated 4-Methylumbelliferone (4-MU) against invasiveness of lung cancer in vivo and in vitro. Int J Biol Macromol 2022; 206:467-480. [PMID: 35202638 DOI: 10.1016/j.ijbiomac.2022.02.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/15/2023]
Abstract
Lung cancer is the most common cause of cancer death worldwide. Thereby, new treatment strategies as targeting nano-therapy present promising possibilities to control the aggressiveness of lung cancer. Dual CD44 and folate receptors targetable nanocapsule based on folic-polyethylene glycol-hyaluronic (FA-PEG-HA) were fabricated to improve the therapeutic activity of 4-Methylumbelliferone (4-MU) toward lung cancer. In this study, we fabricate 4-MU Nps as a hybrid polymeric (protamine) protein (albumin) nanocapsule, then functionalized by targeting layer to form 4-MU@FA-PEG-HA Nps with encapsulation efficacy 96.15%. The in vitro study of free 4-MU, 4-MU Nps and 4-MU@FA-PEG-HA Nps on A549 lung cancer cells reveal that the 4-MU Nps and 4-MU@FA-PEG-HA Nps were more cytotoxic than free 4-MU on A549 cells. The observed therapeutic activity of 4-MU@FA-PEG-HA Nps on urethane-induced lung cancer model, potentiality revealed a tumor growth inhibition via apoptotic mechanisms and angiogenesis inhibition. The results were supported by Enzyme-linked immunosorbent assay (ELIZA) of transforming growth factors (TGFβ1) and serum HA, histopathological analysis as well as immunohistochemical Ki67, CD44, Bcl-2 and caspace-3 staining. Moreover, 4-MU@FA-PEG-HA Nps exhibited a promising safety profile. Hence, it is expected that our developed novel nano-system can be used for potential application on tumor therapy for lung cancer.
Collapse
Affiliation(s)
- Marwa Labib Essa
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| | - Aya A Elashkar
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| | - Nemany A N Hanafy
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| | - Eman M Saied
- Pathology Department, Faculty of Medicine, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt.
| |
Collapse
|
6
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022; 21:15330338221080974. [PMID: 35253549 PMCID: PMC8905056 DOI: 10.1177/15330338221080974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our brain is protected by physio-biological barriers. The blood–brain barrier (BBB) main mechanism of protection relates to the abundance of tight junctions (TJs) and efflux pumps. Although BBB is crucial for healthy brain protection against toxins, it also leads to failure in a devastating disease like brain cancer. Recently, nanocarriers have been shown to pass through the BBB and improve patients’ survival rates, thus becoming promising treatment strategies. Among nanocarriers, inorganic nanocarriers, solid lipid nanoparticles, liposomes, polymers, micelles, and dendrimers have reached clinical trials after delivering promising results in preclinical investigations. The size of these nanocarriers is between 10 and 1000 nm and is modified by surface attachment of proteins, peptides, antibodies, or surfactants. Multiple research groups have reported transcellular entrance as the main mechanism allowing for these nanocarriers to cross BBB. Transport proteins and transcellular lipophilic pathways exist in BBB for small and lipophilic molecules. Nanocarriers cannot enter via the paracellular route, which is limited to water-soluble agents due to the TJs and their small pore size. There are currently several nanocarriers in clinical trials for the treatment of brain cancer. This article reviews challenges as well as fitting attributes of nanocarriers for brain tumor treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Amin Mehrabian
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Mohammad Mashreghi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
El-Emam SZ, Abo El-Ella DM, Fayez SM, Asker M, Nazeam JA. Novel dandelion mannan-lipid nanoparticle: Exploring the molecular mechanism underlying the potent anticancer effect against non-small lung carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
10
|
Hanafy NAN. Optimally designed theranostic system based folic acids and chitosan as a promising mucoadhesive delivery system for encapsulating curcumin LbL nano-template against invasiveness of breast cancer. Int J Biol Macromol 2021; 182:1981-1993. [PMID: 34058209 DOI: 10.1016/j.ijbiomac.2021.05.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022]
Abstract
Curcumin is a potential candidate in cancer therapy due to its ability to inhibit many signalling pathways at the same time of exposure because of its unique content of aromatic ring, B diketone, olefinic linker, and O methoxy phenolic groups. Its applications in biomedical therapy is limited because of its sensitivity, and its rapid degradation. In the current study, curcumin inserted into polyelectrolyte pairs (protamine and dextran) and then was functionalized by folic acid conjugated chitosan used for the first time, as theranostic system. Such this strategy allows to improve its mucoadhesion and penetration that increases their accumulation inside cancer cells. CUR-LbL NPs were then used to investigate drug release inside Human Mammary Carcinoma (MCF-7 cell lines) after their incubations for 3 h, 6 h and 24 h. Flow cytometry indicated that the percentages of apoptosis, necrosis and cell cycle arrest were increased significantly in MCF-7 cell lines treated by CUR-LbL NPs. Furthermore, SEM image showed many debris in the section of MCF-7 treated by CUR-LbL NPs. Here, it can be summarized that curcumin functionalized by multi-layered polyelectrolyte capsules can be used as a model to study the fate of the adsorbed nanocarriers and to investigate the drug release inside cells.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
11
|
Hanafy NAN. Starch based hydrogel NPs loaded by anthocyanins might treat glycogen storage at cardiomyopathy in animal fibrotic model. Int J Biol Macromol 2021; 183:171-181. [PMID: 33901560 DOI: 10.1016/j.ijbiomac.2021.04.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Many reports have been published recently confirmed the limitation of cargo molecules delivered into the heart. This failure is mostly associated with lymphatic or vascular channels washing or to the immune system recognition. Delivery of anthocyanins by encapsulation may augment it retention in the heart at early time points as the capsules are too large to wash out by lymphatic or venous channels and the physical structure of the capsule may shield the anthocyanins from immunoglobulins and cellular components of the immune system. In the current study, the cardiac dysfunction was induced by using carbon tetrachloride and then animal were treated orally by using anthocyanins incorporated into hydrogel NPs twice time /week for 4 weeks. The results showed anthocyanin loaded hydrogel NPs has ability to re-maintain the glycogen content in the liver and heart tissues of fibrotic group (13 ± 1.4 and 5 ± 0.7 μmol glucose/g tissue). Additionally, MDA and hydroxyproline were significantly reduced. PAS stain showed depletion of glycogen granules from heart tissue. It is concluded that starch based hydrogel loaded by anthocyanins can improve histological cardiac functions after their injury .
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
12
|
Extraction of chlorophyll and carotenoids loaded into chitosan as potential targeted therapy and bio imaging agents for breast carcinoma. Int J Biol Macromol 2021; 182:1150-1160. [PMID: 33865895 DOI: 10.1016/j.ijbiomac.2021.03.189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
In the current study, the treatment efficacy of ECHCAH was evaluated in vitro studies using cell viability and flow cytometry in human TNBCs. The results here showed significant gradual reduction in growth of TNBCs (MDA-231cell lines) after their exposure to serial concentrations for hydrogel assembly (5 μg/mL to 25 μg/mL) for 24 and 48 h, representing (86 ± 1% to 45 ± 1.5% p < 0.001) and (79 ± 1.5% to 35 ± 2.5% p < 0.001) respectively. The flow cytometry showed significant increase in the present of late apoptotic and necrotic cells (64% ± 1.2 and 27% ± 0.3 p < 0.001) after 48 h incubation compared to untreated cells (1.13% ± 0.3 and 4% ± 0.2 p < 0.001) respectively. It can be summarized that ECHCA inside targeted hydrogel assemblies can inhibit proliferation of cancer cells.
Collapse
|