1
|
Varadharajan S, Vasanthan KS, Agarwal P. Application of Reversible Four-Dimensional Printing of Shape Memory Alloys and Shape Memory Polymers in Structural Engineering: A State-of-the-Art Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:919-953. [PMID: 39359610 PMCID: PMC11442371 DOI: 10.1089/3dp.2022.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The rapid development and advancements in field of shape memory alloys (SMAA) has tremendously increased the progress in four-dimensional (4D) printing. The conventional 4D printing will require skilled manpower but utilization of reversibility aspect achieved using self adjusting external stimuli will eliminate the necessity of sophisticated devices and human intervention in 4D printing. The components created using reversible 4D printing can be reused after each recovery cycle that suits the current industry requirements. This review is divided into three sections: The first section starts with a detailed illustration of different mechanisms associated with SMAA and shape memory polymers SMPP along with an illustration of realistic 3D-printed SMAA and SMPP. The second section of this paper deals with the different methods of manufacture with the advantages and disadvantages of different types of SMAA. The third section deals with the mechanisms associated with SMPP, namely (1) Thermo-responsive mechanism, (2) Chemo-responsive mechanism, and (3) Photo-responsive mechanism along with a detailed insight into the aspect of repeatability and reversibility. The fourth section presents an exhaustive review of the application of SMAA and SMPP in civil engineering. The last section of this work throws light on the challenges faced in 4D reversible printing of SMAA and SMPP along with the potential solutions and presents directions for future research.
Collapse
Affiliation(s)
- S. Varadharajan
- Department of Civil Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Prachi Agarwal
- Manipal Center of Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Salaheldeen M, Zhukova V, Rosero J, Salazar D, Ipatov M, Zhukov A. Comparison of the Magnetic and Structural Properties of MnFePSi Microwires and MnFePSi Bulk Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1874. [PMID: 38673230 PMCID: PMC11051446 DOI: 10.3390/ma17081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
We provide comparative studies of the structural, morphological, microstructural, and magnetic properties of MnFePSi-glass-coated microwires (MnFePSi-GCMWs) and bulk MnFePSi at different temperatures and magnetic fields. The structure of MnFePSi GCMWs prepared by the Taylor-Ulitovsky method consists of the main Fe2P phase and secondary impurities phases of Mn5Si3 and Fe3Si, as confirmed by XRD analysis. Additionally, a notable reduction in the average grain size from 24 µm for the bulk sample to 36 nm for the glass-coated microwire sample is observed. The analysis of magnetic properties of MnFePSi-glass-coated microwires shows different magnetic behavior as compared to the bulk MnFePSi. High coercivity (450 Oe) and remanence (0.32) are observed for MnFePSi-GCMWs compared to low coercivity and remanent magnetization observed for bulk MnFePSi alloy. In addition, large irreversibility at low temperatures is observed in the thermal dependence of magnetization of microwires. Meanwhile, the bulk sample shows regular ferromagnetic behavior, where the field cooling and field heating magnetic curves show a monotonic increase by decreasing the temperature. The notable separation between field cooling and field heating curves of MnFePSi-GCMWs is seen for the applied field at 1 kOe. Also, the M/M5K vs. T for MNFePSi-GCMWs shows a notable sensitivity at a low magnetic field compared to a very noisy magnetic signal for bulk alloy. The common features for both MnFePSi samples are high Curie temperatures above 400 K. From the experimental results, we can deduce the substantial effect of drawing and quenching involved in the preparation of glass-coated MnFePSi microwires in modification of the microstructure and magnetic properties as compared to the same bulk alloy. The provided studies prove the suitability of the Taylor-Ulitovsky method for the preparation of MnFePSi-glass-coated microwires.
Collapse
Affiliation(s)
- Mohamed Salaheldeen
- Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain;
- Department of Applied Physics I, EIG, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- EHU Quantum Center, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| | - Valentina Zhukova
- Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain;
- Department of Applied Physics I, EIG, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain
- EHU Quantum Center, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| | - James Rosero
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; (J.R.); (D.S.)
| | - Daniel Salazar
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; (J.R.); (D.S.)
| | - Mihail Ipatov
- Servicios Generales de Investigación (SGIker), 48080 Bilbao, Spain;
| | - Arcady Zhukov
- Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain;
- Department of Applied Physics I, EIG, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain
- EHU Quantum Center, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
3
|
Rajapandi P, Viruthagiri G, Shanmugam N. Influence of Ni doping on hematite nanoparticles for enhanced structural, optical, magnetic properties and antibacterial analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
M El-Metwaly N, A Katouah H, El-Desouky MG, El-Bindary AA, El-Bindary MA. Fabricating of Fe 3O 4@Ag-MOF nanocomposite and evaluating its adsorption activity for removal of doxorubicin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:1099-1115. [PMID: 36537029 DOI: 10.1080/10934529.2022.2156230] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this research was to investigate the doxorubicin (DOX) adsorption behavior on Fe3O4@Ag-Metal Organic Framework (Fe3O4@Ag-MOF). This adsorbent was effectively prepared using a simple synthetic process. Many instruments, including FTIR, XRD, SEM, TEM, and XPS, were used to characterized the new Fe3O4@Ag-MOF. Additionally, the presented Fe3O4@Ag-surface MOF's area was shown to be 586.06 m2/g with a size of around 43 nm. The composite that was made has magnetic properties that were quite strong (63.3 emu/g). The produced Fe3O4@Ag-MOF was discovered to have a fantastic ability to adsorb the anti-cancer drug DOX, with a 1.72 mmol/g (934.85 mg/g) adsorption capacity. On the basis of changes in temperature, pH, and DOX concentration, the DOX adsorption behavior mechanism was investigated. The adsorption capacity of Fe3O4@Ag-MOF for DOX was greater at pH 7.0, according to experimental data. The adsorption equilibrium also demonstrated that the Langmuir adsorption was regulated the best fit to the extracted data compared with the other models. Additionally, the activation energy of adsorption for DOX onto Fe3O4@Ag-MOF was determined, indicating the chemisorption process. The adsorption kinetics was shown in the well-known kinetic model of the pseudo-second-order. The adsorption thermodynamic measurements were documented according to according to the enthalpy (ΔH°), entropy(ΔS°), and Gibbs free energy (ΔG°) parameters demonstrated that the reaction was endothermic and spontaneous thermodynamic. The adsorption of DOX onto Fe3O4@Ag-MOF from real water samples (tap water, effluent wastewater, and influence wastewater) were investigated. It's interesting that the synthetic adsorbent had great recyclability 72.6 percent in the fifth cycle indicating that it was highly recyclable. After adsorption, the typical Fe3O4@Ag-MOF XRD peak intensities and locations were mostly unchanged throughout adsorption indicates the crystalline phase remained steady. The results indicated that Fe3O4@Ag-MOF were a good candidate for adsorbing the DOX and treating wastewater.
Collapse
Affiliation(s)
- N M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H A Katouah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M G El-Desouky
- Egyptian Propylene and Polypropylene Company, Port Said, Egypt
| | - A A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - M A El-Bindary
- Basic Science Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| |
Collapse
|
5
|
Green synthesis of iron oxide nanoparticles using Melia azedarach flowers extract and evaluation of their antimicrobial and antioxidant activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Preparation and Magneto-Structural Investigation of Nanocrystalline CoMn-Based Heusler Alloy Glass-Coated Microwires. Processes (Basel) 2022. [DOI: 10.3390/pr10112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we have successfully fabricated nanocrystalline Co2MnSi Heusler alloy glass-coated microwires with a metallic nucleus diameter (dnuclei) 10.2 ± 0.1 μm and total diameter 22.2 ± 0.1 μm by the Taylor–Ulitovsky technique for the first time. Magnetic and structural investigations have been performed to clarify the basic magneto-structural properties of the Co2MnSi glass-coated microwires. XRD showed a well-defined crystalline structure with a lattice parameter a = 5.62 Å. The room temperature magnetic behavior showed a strong in-plane magnetocrystalline anisotropy parallel to the microwire axis. The M-H loops showed unique thermal stability with temperature where the coercivity (Hc) and normalized magnetic remanence exhibited roughly stable tendency with temperature. Moreover, quite soft magnetic behavior has been observed with values of coercivity of the order of Hc = 7 ± 2 Oe. Zero field cooling and field cooling (ZFC-FC) magnetization curves displayed notable irreversible magnetic dependence, where a blocking temperature (TB = 150 K) has been observed. The internal stresses generated during the fabrication process induced a different magnetic phase and is responsible for the irreversibility behavior. Moreover, high Curie temperature has been reported (Tc ≈ 985 K) with unique magnetic behavior at a wide range of temperature and magnetic fields, making it a promising candidate in magnetic sensing and spintronic applications.
Collapse
|
7
|
Salaheldeen M, Nafady A, Abu-Dief AM, Díaz Crespo R, Fernández-García MP, Andrés JP, López Antón R, Blanco JA, Álvarez-Alonso P. Enhancement of Exchange Bias and Perpendicular Magnetic Anisotropy in CoO/Co Multilayer Thin Films by Tuning the Alumina Template Nanohole Size. NANOMATERIALS 2022; 12:nano12152544. [PMID: 35893512 PMCID: PMC9332129 DOI: 10.3390/nano12152544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
The interest in magnetic nanostructures exhibiting perpendicular magnetic anisotropy and exchange bias (EB) effect has increased in recent years owing to their applications in a new generation of spintronic devices that combine several functionalities. We present a nanofabrication process used to induce a significant out-of-plane component of the magnetic easy axis and EB. In this study, 30 nm thick CoO/Co multilayers were deposited on nanostructured alumina templates with a broad range of pore diameters, 34 nm ≤ Dp ≤ 96 nm, maintaining the hexagonal lattice parameter at 107 nm. Increase of the exchange bias field (HEB) and the coercivity (HC) (12 times and 27 times, respectively) was observed in the nanostructured films compared to the non-patterned film. The marked dependence of HEB and HC with antidot hole diameters pinpoints an in-plane to out-of-plane changeover of the magnetic anisotropy at a nanohole diameter of ∼75 nm. Micromagnetic simulation shows the existence of antiferromagnetic layers that generate an exceptional magnetic configuration around the holes, named as antivortex-state. This configuration induces extra high-energy superdomain walls for edge-to-edge distance >27 nm and high-energy stripe magnetic domains below 27 nm, which could play an important role in the change of the magnetic easy axis towards the perpendicular direction.
Collapse
Affiliation(s)
- Mohamed Salaheldeen
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Departamento de Física, Universidad de Oviedo, C/Federico García Lorca 18, 33007 Oviedo, Spain; (R.D.C.); (M.P.F.-G.); (J.A.B.)
- Departamento de Física Aplicada, EIG, Universidad del País Vasco, UPV/EHU, 20018 San Sebastián, Spain
- Correspondence: (M.S.); (P.Á.-A.)
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt;
| | - Rosario Díaz Crespo
- Departamento de Física, Universidad de Oviedo, C/Federico García Lorca 18, 33007 Oviedo, Spain; (R.D.C.); (M.P.F.-G.); (J.A.B.)
| | - María Paz Fernández-García
- Departamento de Física, Universidad de Oviedo, C/Federico García Lorca 18, 33007 Oviedo, Spain; (R.D.C.); (M.P.F.-G.); (J.A.B.)
| | - Juan Pedro Andrés
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.P.A.); (R.L.A.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ricardo López Antón
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.P.A.); (R.L.A.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Jesús A. Blanco
- Departamento de Física, Universidad de Oviedo, C/Federico García Lorca 18, 33007 Oviedo, Spain; (R.D.C.); (M.P.F.-G.); (J.A.B.)
| | - Pablo Álvarez-Alonso
- Departamento de Física, Universidad de Oviedo, C/Federico García Lorca 18, 33007 Oviedo, Spain; (R.D.C.); (M.P.F.-G.); (J.A.B.)
- Instituto Universitario de Tecnología Industrial de Asturias, Universidad de Oviedo, 33203 Gijón, Spain
- Correspondence: (M.S.); (P.Á.-A.)
| |
Collapse
|
8
|
Alfi AA, Al-Qahtani SD, Alatawi NM, Attar RMS, Abu Al-Ola K, Habeebullah TM, El-Metwaly NM. Simple preparation of novel photochromic polyvinyl alcohol/carboxymethyl cellulose security barcode incorporated with lanthanide-doped aluminate for anticounterfeiting applications. LUMINESCENCE 2022; 37:1152-1161. [PMID: 35484850 DOI: 10.1002/bio.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Forgery and low-quality products pose a danger to the society. Therefore, there are increasing demands for the production of easy to recognize and difficult to copy anti-counterfeiting materials. Products with smart photochromic and fluorescent properties can change color and emission spectra responding to a light source. In this context, we devised a straightforward preparation of luminescent polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) nanocomposite to function as a transparent labeling film. The lanthanide-doped aluminate (LdA) was prepared in the nanoparticle form to indicate diameters of 35-115 nm. Different ratios of the lanthanide-doped aluminate (LdA) were physically dispersed in the PVA/CMC nanocomposite label film to provide photochromic, ultraviolet protection, antimicrobial activity and hydrophobic properties. Fluorescence peaks were detected at 365 and 519 nm to indicate a color change to green. As a result of increasing the phosphor ratio, improved superhydrophobic activity was achieved as the contact angle increased from 126.1° to 146.0° without affecting the film original physical and mechanical properties. Both UV protection and antibacterial activity were also investigated. The films showed quick and reversible photochromic response without fatigue. The current strategy reported the development of photochromic smart label that is transparent, cost-effective and flexible. As a result, numerous anticounterfeiting products can benefit from the current label for a better market. LdA-loaded PVA/CMC films demonstrated antibacterial activity between poor, good, very good and outstanding as the percentage of LdA in the film matrix increased. The current film can be applied as a transparent photochromic security barcode for anticounterfeiting applications and smart packaging.
Collapse
Affiliation(s)
- Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Nada M Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Roba M S Attar
- Department of Microbiology, Faculty of Science, University of Jeddah, P.O. Box 2360S, Saudi Arabia
| | - Khulood Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Saudi Arabia
| | - Turki M Habeebullah
- Department of Environment and Health Research, Custodian of two holy mosques Institute for Hajj and Umrah Research, Umm Al Qura University, Makkah
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
9
|
Dependence of Structural, Morphological and Magnetic Properties of Manganese Ferrite on Ni-Mn Substitution. Int J Mol Sci 2022; 23:ijms23063097. [PMID: 35328516 PMCID: PMC8949668 DOI: 10.3390/ijms23063097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
This paper presents the influence of Mn2+ substitution by Ni2+ on the structural, morphological and magnetic properties of Mn1−xNixFe2O4@SiO2 (x = 0, 0.25, 0.50, 0.75, 1.00) nanocomposites (NCs) obtained by a modified sol-gel method. The Fourier transform infrared spectra confirm the formation of a SiO2 matrix and ferrite, while the X-ray diffraction patterns show the presence of poorly crystalline ferrite at low annealing temperatures and highly crystalline mixed cubic spinel ferrite accompanied by secondary phases at high annealing temperatures. The lattice parameters gradually decrease, while the crystallite size, volume, and X-ray density of Mn1−xNixFe2O4@SiO2 NCs increase with increasing Ni content and follow Vegard’s law. The saturation magnetization, remanent magnetization, squareness, magnetic moment per formula unit, and anisotropy constant increase, while the coercivity decreases with increasing Ni content. These parameters are larger for the samples with the same chemical formula, annealed at higher temperatures. The NCs with high Ni content show superparamagnetic-like behavior, while the NCs with high Mn content display paramagnetic behavior.
Collapse
|
10
|
Structural, Wetting and Magnetic Properties of Sputtered Fe 70Pd 30 Thin Film with Nanostructured Surface Induced by Dealloying Process. NANOMATERIALS 2021; 11:nano11020282. [PMID: 33499056 PMCID: PMC7911447 DOI: 10.3390/nano11020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
FePd alloys in the thin film form represent a multipurpose and versatile material with relevant chemical and physical properties studied in different research fields. Moreover, the ability to manipulate and fine-tune the film surface with nanometric scale precision represents a degree of freedom useful to adapt these thin film properties to the demands of different desired applications. In this manuscript, Fe70Pd30 (at. %) thin films are prepared with a thickness of 50 and 200 nm by means of the widely used co-sputtering deposition technique. Subsequently, selective removal of the iron element from the alloy and the consequent surface diffusion of the palladium was induced by a dealloying treatment under free corrosion conditions in hydrochloric acid. The size and shape of the grains of the as-deposited thin films determine the dissolution rate of the iron element with a direct consequence not only on the surface morphology and the stoichiometry of the alloy but also on the wetting and magnetic properties of the sample. X-ray diffraction, Scanning Electron Microscopy (SEM) images, contact angle and magnetic measurements have been performed to provide a thorough characterisation of the fundamental properties of these nanostructured bimetallic thin films.
Collapse
|