1
|
Schardosim RFDC, Cardozo TR, de Souza AP, Seeber A, Flores WH, Lehmann M, Dihl RR. Cyto-genotoxicity of crystalline and amorphous niobium (V) oxide nanoparticles in CHO-K1 cells. Toxicol Res (Camb) 2022; 11:765-773. [PMID: 36337238 PMCID: PMC9618107 DOI: 10.1093/toxres/tfac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 08/28/2023] Open
Abstract
Niobium (V) oxide nanoparticles (NINPs) have been widely and increasingly applied in various health products and industrial processes. This merits further study of their toxicity. Here, we investigated the potential of NINPs to induce DNA damage, cytotoxicity, and chromosome instability in cultured CHO-K1 cells. NINPs were physico-chemically characterized. As assessed by comet assay, crystalline and amorphous NINPs were genotoxic at the highest concentrations evaluated. The cytokinesis-block micronucleus assay demonstrated that a 24-h treatment with NINPs, for the crystalline and the amorphous samples, significantly reduced the nuclear division cytotoxicity index. In addition, a 4-h treatment period of crystalline NINPs increased micronucleus (MNi) frequencies. MNi, nucleoplasmic bridges and nuclear buds were detected after exposure of the cells for 24 h to crystalline NINPs. In the amorphous sample, chromosome instability was restricted to the induction of MNi, in the 24-h treatment, detected at all tested concentrations. The fluorescence and dark field microscopy demonstrated the uptake of NINPs by CHO-K1 cells and an intracellular distribution outlining the nucleus. Our data advance understanding of the cytotoxic and genotoxic effects of NINPs and should be taken into consideration when setting up guidelines for their use in industrial or health products.
Collapse
Affiliation(s)
- Raíne Fogliati De Carli Schardosim
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Tatiane Rocha Cardozo
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
- Research Group on Nanostructured Materials, Federal University of the Pampa, Campus Bagé, Avenida Maria Anunciação Gomes de Godoy, 1650, 96413-172, RS, Brazil
| | - Ana Paula de Souza
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Allan Seeber
- Research Group on Nanostructured Materials, Federal University of the Pampa, Campus Bagé, Avenida Maria Anunciação Gomes de Godoy, 1650, 96413-172, RS, Brazil
| | - Wladimir Hernandez Flores
- Research Group on Nanostructured Materials, Federal University of the Pampa, Campus Bagé, Avenida Maria Anunciação Gomes de Godoy, 1650, 96413-172, RS, Brazil
| | - Maurício Lehmann
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Rafael Rodrigues Dihl
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
- Postgraduate Program in Dentistry, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| |
Collapse
|
2
|
First-Principle and Atomistic Modelling in Materials Science. MATERIALS 2021; 14:ma14061469. [PMID: 33802776 PMCID: PMC8002450 DOI: 10.3390/ma14061469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022]
Abstract
In the last two decades, the importance of Computational Materials Science has continuously increased due to the steadily growing availability of computer power [...].
Collapse
|