Kowert BA. Diffusion of Squalene in Nonaqueous Solvents.
ACS OMEGA 2022;
7:31424-31430. [PMID:
36092635 PMCID:
PMC9454272 DOI:
10.1021/acsomega.2c03842]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Capillary flow techniques have been used to determine the translational diffusion constant, D, of squalene in seven alkanes and five cyclohexanes. The alkanes are n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane, 2,2,4,4,6,8,8-heptamethylnonane (isocetane), and 2,6,10,14-tetramethylpentadecane (pristane). The cyclohexanes are cyclohexane, n-butylcyclohexane, n-hexylcyclohexane, n-octylcyclohexane, and n-dodecylcyclohexane. When combined with published data in CD2Cl2, ethyl acetate, n-hexadecane, squalane, n-octane-squalane mixtures, and supercritical CO2, the 35 diffusion constants and viscosities, η, vary by factors of ∼230 and ∼500, respectively. A fit to the modified Stokes-Einstein equation (MSE, D/T = A SE/η p ) gives an average absolute percentage difference (AAPD) of 7.72% between the experimental and calculated D values where p and A SE are constants, T is the absolute temperature, and the AAPD is the average value of (102) (|D calcd - D exptl|/D exptl). Two other MSE fits using subsets of the 35 diffusion constants may be useful for (a) estimating the viscosity of the hydrophobic core of lipid droplets, where squalene is a naturally occurring component, and (b) providing estimates of the D values needed to design extraction processes by which squalene is obtained from plant oils. The Wilke-Chang equation also was considered and found to give larger AAPDs than the corresponding MSE fits.
Collapse