1
|
Razouq H, Berger T, Hüsing N, Diwald O. Vapor phase-grown TiO 2 and ZnO nanoparticles inside electrospun polymer fibers and their calcination-induced organization. MONATSHEFTE FUR CHEMIE 2023; 154:849-856. [PMID: 37521146 PMCID: PMC10382359 DOI: 10.1007/s00706-023-03093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
The spatial organization of metal oxide nanoparticles represents an important factor in the chemical utilization of resulting structures. For the production of networks that are composed of metal oxide nanoparticle chains, we dispersed vapor phase-grown TiO2 and ZnO nanoparticles homogeneously in an aqueous polyvinyl alcohol solution. After electrospinning, we analyzed the sizes and diameters of the compositionally homogeneous electrospun fibers and discussed the size distribution and morphology of the nanoparticles inside. Calcination-induced polymer removal gives rise to self-supported nanoparticle-based nanofibers. Particle coarsening by a factor of ~ 2 for TiO2 and ~ 3 for ZnO nanoparticles is observed. Graphical abstract
Collapse
Affiliation(s)
- Hasan Razouq
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| | - Nicola Hüsing
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Zatrochová S, Lhotská I, Erben J, Chvojka J, Švec F, Chocholouš P, Šatínský D. Small nanofibrous disks for preconcentration of environmental contaminants followed by direct in-vial elution and chromatographic determination. Talanta 2023; 263:124688. [PMID: 37247455 DOI: 10.1016/j.talanta.2023.124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
A novel method for the extraction of river water contaminants as model analytes of ranging polarities, including bisphenols A, C, S, Z, fenoxycarb, kadethrin, and deltamethrin, using small compact fibrous disks has been developed and validated. Polymer nanofibers and microfibers prepared from poly(3-hydroxybutyrate), polypropylene, polyurethane, polyacrylonitrile, poly(lactic acid), and polycaprolactone doped with graphene were evaluated in terms of extraction efficiency, selectivity, and stability in organic solutions. Our novel extraction procedure comprised preconcentration of analytes from 150 mL river water to 1 mL of eluent using a compact nanofibrous disk freely vortexed in the sample. Small nanofibrous disks with a diameter of 10 mm were cut from a compact and mechanically stable 1-2 mm thick micro/nanofibrous sheet. After 60 min extraction in a magnetically stirred sample located in a beaker, the disk was removed from the liquid and washed with water. Then, the disk was inserted into a 1.5 mL HPLC vial and extracted with 1.0 ml methanol upon short intensive shaking. Our approach avoided the undesired problems related to the manual handling typical of "classical" SPE procedure since the extraction was carried out directly in the HPLC vial. No sample evaporation, reconstitution, or pipetting was required. The nanofibrous disk is affordable, needs no support or holder, and its use avoids creation of plastic waste originating from disposable materials. Recovery of compounds from the disks was 47.2-141.4% depending on the type of polymer used and the relative standard deviations calculated from 5 extractions ranged from 6.1 to 11.8% for poly(3-hydroxybutyrate), 6.3-14.8% for polyurethane, and 1.7-16.2% for polycaprolactone doped with graphene. A small enrichment factor was obtained for polar bisphenol S using all sorbents. A higher preconcentration reaching up to 40-fold was achieved for lipophilic compounds such as deltamethrin when using poly(3-hydroxybutyrate) and graphene-doped polycaprolactone.
Collapse
Affiliation(s)
- Slavomíra Zatrochová
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Ivona Lhotská
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jakub Erben
- The Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Jiří Chvojka
- The Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Veerendra GTN, Dey S, Manoj AVP, Kumaravel B. Life cycle assessment for a suburban building located within the vicinity using Revit Architecture. JOURNAL OF BUILDING PATHOLOGY AND REHABILITATION 2022. [PMCID: PMC9176164 DOI: 10.1007/s41024-022-00199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Buildings account for 25% of carbon emissions and 32% of ultimate energy consumption. Urbanization has led to an increase in the requirement for infrastructure in general, which has led to an increase in the demand for housing. Building has a significant influence on the market, community, and the environment, and these issues must be addressed. Building projects that start with the sound design decisions have a far better chance of attaining long-term viability. The environmental consequences of a structure may be reduced through design by as much as 70%. Both the professional and educational groups have welcome to the connections between sustainability and Building Information Modeling (BIM). Construction industry cooperation and productivity are predicted to improve as a result of BIM, which is a mix of technology or organizational solutions that are intended to boost inter-organizational collaboration in building design, construction and maintenance. The increasing of populations is interested in creating ecologically friendly structures that are both high-performing and cost-effective. An approach to analysis a sustainable building that has an energy-efficient orientation and amenities based on the specific location in southern India's subcontinent was presented in the present research. This research work studies a novel approach to implementing an integrated platform for sustainable design in the suburban area.
Collapse
|
4
|
Nachev N, Spasova M, Manolova N, Rashkov I, Naydenov M. Electrospun Polymer Materials with Fungicidal Activity: A Review. Molecules 2022; 27:5738. [PMID: 36080503 PMCID: PMC9457848 DOI: 10.3390/molecules27175738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been special interest in innovative technologies such as polymer melt or solution electrospinning, electrospraying, centrifugal electrospinning, coaxial electrospinning, and others. Applying these electrokinetic methods, micro- or nanofibrous materials with high specific surface area, high porosity, and various designs for diverse applications could be created. By using these techniques it is possible to obtain fibrous materials from both synthetic and natural biocompatible and biodegradable polymers, harmless to the environment. Incorporation of low-molecular substances with biological activity (e.g., antimicrobial, antifungal) is easily feasible. Moreover, biocontrol agents, able to suppress the development and growth of plant pathogens, have been embedded in the fibrous materials as well. The application of such nanotechnologies for the creation of plant protection products is an extremely promising new direction. This review emphasizes the recent progress in the development of electrospun fungicidal dressings and their potential to be applied in modern agriculture.
Collapse
Affiliation(s)
- Nasko Nachev
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariya Spasova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mladen Naydenov
- Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Li Y, Luan Y, Liu W, Wang C, Cao H, Liu P. Cellulose nanofibrils/polyvinyl alcohol/silver nanoparticles composite hydrogel: Preparation and its catalyst degradation performance of cationic dye. J Appl Polym Sci 2022. [DOI: 10.1002/app.52246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Yunhao Luan
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Wanyi Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Cong Wang
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
6
|
Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14206709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.
Collapse
|
7
|
Effect of Nb5+ and In3+ Ions on Moisture Sensitivity of Electrospun Titanium/Tungsten Oxide Nanostructures: Microstructural Characterization and Electrical Response. Processes (Basel) 2021. [DOI: 10.3390/pr9081336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this work, Nb5+ and In3+ ions were used as dopants in titanium/tungsten oxide nanostructures that are produced by the electrospinning and sintering process, for relative humidity (RH) detection. The microstructural properties were investigated by SEM, EDS, XRD, Raman and FTIR techniques. The electrical response characterization of the samples was performed by electrical impedance spectroscopy in the range of 400 Hz to 40 MHz, at 20 °C. The sensors sensitivity to moisture was evaluated in terms of the impedance variations to RH (10–100%). The combined analysis of the microstructural characterization results confirmed the surface interaction between the oxides and the ions incorporation in Ti crystal lattice. All the studied sensors showed a conduction transition from p- to n-type at around 30–40% RH: besides, they also displayed better sensitivity to moisture than those obtained in a previous work using titanium/tungsten combination using a different fabricationn route. The impedance modulus variation up to 1.1 and 1.3 orders of magnitude for the 4 wt % niobium and indium doped samples, respectively. The results are directly associated with the microstructure and alternative preparation process.
Collapse
|