1
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
2
|
Nakhaei A, Raissi H, Farzad F. Engineered nanoparticles as Selinexor drug delivery systems across the cell membrane and related signaling pathways in cancer cells. J Mol Graph Model 2024; 131:108809. [PMID: 38879904 DOI: 10.1016/j.jmgm.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
In the present work, molecular dynamics simulation is applied to evaluate the drug carrier efficiency of graphene oxide nanoflake (GONF) for loading of Selinexor (SXR) drug as well as the drug delivery by 2D material through the membrane in aqueous solution. In addition, to investigate the adsorption and penetration of drug-nanocarrier complex into the cell membrane, well-tempered metadynamics simulations and steered molecular dynamics (SMD) simulations were performed. Based on the obtained results, it is evident that intermolecular hydrogen bonds (HBs) and π-π interactions play a significant role in expediting the interaction between drug molecules and the graphene oxide (GO) nanosheet, ultimately resulting in the formation of a stable SXR-GO complex. The Lennard-Jones (L-J) energy value for the interaction of SXR with GONF is calculated to be approximately -98.85 kJ/mol. In the SXR-GONF complex system, the dominant interaction between SXR and GONF is attributed to the L-J term, resulting from the formation of a strong π-π interaction between the drug molecules and the substrate surface. Moreover, our simulations show by decreasing the distance of GONF with respect to cell membrane, the interaction energy of GONF-membrane significantly decrease to -1500 kJ/mol resulting in fast diffusion of SXR-GONF complex toward the bilayer surface that is favored opening the way to natural drug nanocapsule.
Collapse
Affiliation(s)
- Alireza Nakhaei
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
3
|
Aljowaie RM, Alsayed MF, Alkubaisi NA, Almarfadi OM, Farrag MA, Abdulmanea AA, Alfuraydi AA, Abalkhail T, Aboul-Soud MAM, Aziz IM. In vitro and in silico evaluation of bioactivities and chemical composition of the aerial parts of Anchusa officinalis L. methanol extract. Cell Biochem Funct 2024; 42:e4093. [PMID: 38978319 DOI: 10.1002/cbf.4093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 μg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 μg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.
Collapse
Affiliation(s)
- Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashail Fahad Alsayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adel A Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tarad Abalkhail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Wang L, Liu J, Wang X, Li X, Zhang X, Yuan L, Wu Y, Liu M. Effect of the combined binding of topotecan and catechin/protocatechuic acid to a pH-sensitive DNA tetrahedron on release and cytotoxicity: Spectroscopic and calorimetric studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124179. [PMID: 38522375 DOI: 10.1016/j.saa.2024.124179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The therapeutic efficacy of chemotherapy drugs can be effectively improved through the dual effects of their combination with natural polyphenols and the delivery of targeted DNA nanostructures. In this work, the interactions of topotecan (TPT), (+)-catechin (CAT), or protocatechuic acid (PCA) with a pH-sensitive DNA tetrahedron (MUC1-TD) in the binary and ternary systems at pHs 5.0 and 7.4 were investigated by fluorescence spectroscopy and calorimetry. The intercalative binding mode of TPT/CAT/PC to MUC1-TD was confirmed, and their affinity was ranked in the order of PCA > CAT > TPT. The effects of the pH-sensitivity of MUC1-TD and different molecular structures of CAT and PCA on the loading, release, and cytotoxicity of TPT were discussed. The weakened interaction under acidic conditions and the co-loading of CAT/PCA, especially PCA, improved the release of TPT loaded by MUC1-TD. The targeting of MUC1-TD and the synergistic effect with CAT/PCA, especially CAT, enhanced the cytotoxicity of TPT on A549 cells. For L02 cells, the protective effect of CAT/PCA reduced the damage caused by TPT. The single or combined TPT loaded by MUC1-TD was mainly concentrated in the nucleus of A549 cells. This work will provide key information for the combined application of TPT and CAT/PCA loaded by DNA nanostructures to improve chemotherapy efficacy and reduce side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xiangtai Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
5
|
Aljeldah MM. Evaluation of the anticancer and antibacterial activities of moscatilin. Heliyon 2024; 10:e31131. [PMID: 38818150 PMCID: PMC11137398 DOI: 10.1016/j.heliyon.2024.e31131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Orchids (Dendrobium sp.) have been the subject of extensive research due to their ubiquitous pharmacological, antimicrobial, and anticancer properties. Moscatilin is a bibenzyl secondary metabolite enriched in orchids that exhibits anticancer and antimicrobial properties through mechanisms that have not yet been fully elucidated. The current study aimed to assess the in vitro anticancer and antibacterial potential of moscatilin. The in vitro anti-proliferative effects of moscatilin against breast cancer-MCF-7 and liver-HepG2 cells were assessed using the dimethylthiazol-diphenyltetrazolium bromide assay. Selected six pro-apoptotic (caspase-3, 8, 9, p53, p21 & Bax) and two anti-apoptotic (Bcl-xL & Bcl-2) gene markers were assessed via qPCR and tested antibacterial activity against various bacterial strains using disc diffusion and broth dilution methods. Moscatilin decreased the cellular viabilities of HepG2 and MCF-7 cancer cells, with anti-proliferation rates of 66 % (IC50 51 ± 5.18 μM) and 58 % (IC50 57 ± 4.18 μM), respectively. This effect was selectively observed in cancer cells, and the impact of moscatilin on non-cancerous MCF-12 cells was marginal. Moreover, moscatilin-treated cells exhibited higher mRNA levels of caspase-3,8, 9, Bax, p53, and p21, whereas lower levels of Bcl-2 and Bcl-xL, two anti-apoptotic markers, were observed. Furthermore, moscatilin exhibited varying degrees of antibacterial activity against the bacterial strains investigated. Notably, the highest antibacterial potentials were observed against Staphylococcus epidermidis and Klebsiella pneumonia, while the lowest inhibitory activity was observed in Escherichia coli and Pseudomonas aeruginosa. Overall, these findings demonstrated that moscatilin exerts potent anticancer effects via apoptosis and has antimicrobial properties against Gram-negative and Gram-positive bacteria that are clinically relevant. These findings highlight the potential of moscatilin as a natural therapeutic candidate for the treatment of cancer and clinically important bacterial pathogens.
Collapse
Affiliation(s)
- Mohammed Mubarak Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 31991, Saudi Arabia
| |
Collapse
|
6
|
Yeo D, Yun YG, Shin SJ, Dashnyam K, Khurelbaatar A, Lee JH, Kim HW. Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism. Sci Rep 2024; 14:10616. [PMID: 38720012 PMCID: PMC11078932 DOI: 10.1038/s41598-024-61125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Oral cancer stands as a prevalent maligancy worldwide; however, its therapeutic potential is limited by undesired effects and complications. As a medicinal edible fungus, Chaga mushroom (Inonotus obliquus) exhibits anticancer effects across diverse cancers. Yet, the precise mechanisms underlying its efficacy remain unclear. We explored the detailed mechanisms underlying the anticancer action of Chaga mushroom extract in oral cancer cells (HSC-4). Following treatment with Chaga mushroom extracts, we analyzed cell viability, proliferation capacity, glycolysis, mitochondrial respiration, and apoptosis. Our findings revealed that the extract reduced cell viability and proliferation of HSC-4 cells while arresting their cell cycle via suppression of STAT3 activity. Regarding energy metabolism, Chaga mushroom extract inhibited glycolysis and mitochondrial membrane potential in HSC-4 cells, thereby triggering autophagy-mediated apoptotic cell death through activation of the p38 MAPK and NF-κB signaling pathways. Our results indicate that Chaga mushroom extract impedes oral cancer cell progression, by inhibiting cell cycle and proliferation, suppressing cancer cell energy metabolism, and promoting autophagy-mediated apoptotic cell death. These findings suggest that this extract is a promising supplementary medicine for the treatment of patients with oral cancer.
Collapse
Affiliation(s)
- Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yeo Gyun Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Drug Research Institute, Mongolian University of Pharmaceutical Science, Ulaanbaatar, 18130, Mongolia
| | - Anand Khurelbaatar
- Drug Research Institute, Mongolian University of Pharmaceutical Science, Ulaanbaatar, 18130, Mongolia
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
7
|
Niu C, Zhang J, Okolo PI. Liver cancer wars: plant-derived polyphenols strike back. Med Oncol 2024; 41:116. [PMID: 38625672 DOI: 10.1007/s12032-024-02353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
8
|
Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, Nur Azlina MF, Arulselvan P. Synthesis and Characterization of Graphene Oxide/Polyethylene Glycol/Folic Acid/Brucine Nanocomposites and Their Anticancer Activity on HepG2 Cells. Int J Nanomedicine 2024; 19:1109-1124. [PMID: 38344441 PMCID: PMC10854405 DOI: 10.2147/ijn.s445206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Background Liver cancer is the sixth most prevalent form of cancer and the second major cause of cancer-associated mortalities worldwide. Cancer nanotechnology has the ability to fundamentally alter cancer treatment, diagnosis, and detection. Objective In this study, we explained the development of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites (GO/PEG/Bru-FA NCs) and evaluated their antimicrobial and anticancer effect on the liver cancer HepG2 cells. Methodology The GO/PEG/Bru-FA NCs were prepared using the co-precipitation technique and characterized using various techniques. The cytotoxicity of the GO/PEG/Bru-FA NCs was tested against both liver cancer HepG2 and non-malignant Vero cells using an MTT assay. The antimicrobial activity of the GO/PEG/Bru-FA NCs was tested against several pathogens using the well diffusion technique. The effects of GO/PEG/Bru-FA NCs on endogenous ROS accumulation, apoptosis, and MMP levels were examined using corresponding fluorescent staining assays, respectively. The apoptotic protein expressions, such as Bax, Bcl-2, and caspases, were studied using the corresponding kits. Results The findings of various characterization assays revealed the development of GO/PEG/Bru-FA NCs with face-centered spherical morphology and an agglomerated appearance with an average size of 197.40 nm. The GO/PEG/Bru-FA NCs treatment remarkably inhibited the growth of the tested pathogens. The findings of the MTT assay evidenced that the GO/PEG/Bru-FA NCs effectively reduced the HepG2 cell growth while not showing toxicity to the Vero cells. The findings of the fluorescent assay proved that the GO/PEG/Bru-FA NCs increased ROS generation, reduced MMP levels, and promoted apoptosis in the HepG2 cells. The levels of Bax, caspase-9, and -3 were increased, and Bcl-2 was reduced in the GO/PEG/Bru-FA NCs-treated HepG2 cells. Conclusion The results of this work demonstrate that GO/PEG/Bru-FA NCs suppress viability and induce apoptosis in HepG2 cells, indicating their potential as an anticancer candidate.
Collapse
Affiliation(s)
- Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura university, Makkah, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura university, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura university, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura university, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura university, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura university, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan, Bangi, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
9
|
Ji G, Li Y, Zhang Z, Li H, Sun P. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma. Heliyon 2024; 10:e24667. [PMID: 38312669 PMCID: PMC10834828 DOI: 10.1016/j.heliyon.2024.e24667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, is often diagnosed at an advanced stage. Surgical interventions are often ineffective, leading HCC patients to rely on systemic chemotherapy. Unfortunately, commonly used chemotherapeutic drugs have limited efficacy and can adversely affect vital organs, causing significant physical and psychological distress for patients. Natural medicine monomers (NMMs) have shown promising efficacy and safety profiles in HCC treatment, garnering attention from researchers. In recent years, the development of novel targeted drug delivery systems (TDDS) combining NMMs with nanocarriers has emerged. These TDDS aim to concentrate drugs effectively in HCC cells by manipulating the characteristics of nanomedicines, leveraging receptor and ligand interactions, and utilizing endogenous stimulatory responses to promote specific nanomedicines distribution. This comprehensive review presents recent research on TDDS for HCC treatment using NMMs from three perspectives: passive TDDS, active TDDS, and stimuli-responsive drug delivery systems (SDDS). It consolidates the current state of research on TDDS for HCC treatment with NMMs and highlights the potential of these innovative approaches in improving treatment outcomes. Moreover, the review also identifies research gaps in the related fields to provide references for future targeted therapy research in HCC.
Collapse
Affiliation(s)
- Guanjie Ji
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Li
- Department of Clinical Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Ping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
10
|
Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, Almuqrin AM, Aljowaie RM, Alkubaisi NA. Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals (Basel) 2024; 17:121. [PMID: 38256954 PMCID: PMC10819509 DOI: 10.3390/ph17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
For centuries, plants and their components have been harnessed for therapeutic purposes, with Ammi visnaga L. (Khella) being no exception to this rich tradition. While existing studies have shed light on the cytotoxic and antimicrobial properties of seed extracts, there remains a noticeable gap in research about the antimicrobial, antioxidant, and anticancer potential of root extracts. This study seeks to address this gap by systematically examining methanol extracts derived from the roots of A. visnaga L. and comparing their effects with those of seed extracts specifically against breast cancer cells. Notably, absent from previous investigations, this study focuses on the comparative analysis of the antimicrobial, antioxidant, and anticancer activities of both root and seed extracts. The methanol extract obtained from A. visnaga L. seeds demonstrated a notably higher level of total phenolic content (TPC) than its root counterpart, measuring 366.57 ± 2.86 and 270.78 ± 2.86 mg GAE/g dry weight of the dry extract, respectively. In the evaluation of antioxidant activities using the DPPH method, the IC50 values for root and seed extracts were determined to be 193.46 ± 17.13 μg/mL and 227.19 ± 1.48 μg/mL, respectively. Turning our attention to cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231), both root and seed extracts displayed similar cytotoxic activities, with IC50 values of 92.45 ± 2.14 μg/mL and 75.43 ± 2.32 μg/mL, respectively. Furthermore, both root and seed extracts exhibited a noteworthy modulation of gene expression, upregulating the expression of caspase and Bax mRNA levels while concurrently suppressing the expression of anti-apoptotic genes (Bcl-xL and Bcl-2), thereby reinforcing their potential as anticancer agents. A. visnaga L. seed extract outperforms the root extract in antimicrobial activities, exhibiting lower minimum inhibitory concentrations (MICs) of 3.81 ± 0.24 to 125 ± 7.63 μg/mL. This highlights the seeds' potential as potent antibacterial agents, expanding their role in disease prevention. Overall, this study underscores the diverse therapeutic potentials of A. visnaga L. roots and seeds, contributing to the understanding of plant-derived extracts in mitigating disease risks.
Collapse
Affiliation(s)
- Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Fetoon Alkhelaiwi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Abdulaziz M. Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| |
Collapse
|
11
|
Ibrahim MAI, Othman R, Chee CF, Ahmad Fisol F. Evaluation of Folate-Functionalized Nanoparticle Drug Delivery Systems-Effectiveness and Concerns. Biomedicines 2023; 11:2080. [PMID: 37509719 PMCID: PMC10376941 DOI: 10.3390/biomedicines11072080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Targeting folate receptors is a potential solution to low tumor selectivity concerning conventional chemotherapeutics. Apart from antibody-drug conjugates, folate-functionalized nanoparticle drug delivery systems are interesting to be explored due to many advantages, yet currently, none seems to enter the clinical trials. Multiple in vitro evidence is available to support its efficacy compared to the non-targeting carrier and free drug formulation. Additionally, several studies pointed out factors affecting its effectiveness, including surface properties and endosomal trapping. However, in vivo biodistribution studies revealed issues that may arise from folate receptor targeting, including rapid liver uptake, subsequently reducing the nanoparticles' tumor uptake. This issue may be due to the folate receptor β expressed by the activated macrophages in the liver; route of administration and tumor location might also influence the targeting effectiveness. Moreover, it is perplexing to generalize nanoparticles reported from various publications, primarily due to the different formulations, lack of characterization, and experimental settings, making it harder to determine the accurate factor influencing targeting effectiveness.
Collapse
Affiliation(s)
| | - Rozana Othman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research & Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre (Nanocat), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Faisalina Ahmad Fisol
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institutes of Biotechnology Malaysia (NIBM), Gelugor 11700, Malaysia
| |
Collapse
|
12
|
Li J, Wang Y, Shan L, Qian L, Wang W, Liu J, Tang J. A General Protocol for Synthesizing Thiolated Folate Derivatives. Molecules 2023; 28:5228. [PMID: 37446887 DOI: 10.3390/molecules28135228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Folic acid (FA) has shown great potential in the fields of targeted drug delivery and disease diagnosis due to its highly tumor-targeting nature, biocompatibility, and low cost. However, FA is generally introduced in targeted drug delivery systems through macromolecular linkage via complex synthetic processes, resulting in lower yields and high costs. In this work, we report a general protocol for synthesizing thiolated folate derivatives. The small molecule thiolated folate (TFa) was first synthesized with a purity higher than 98.20%. First, S-S-containing diol was synthesized with a purity higher than 99.44 through a newly developed green oxidation protocol, which was carried out in water with no catalyst. Then, folic acid was modified using the diol through esterification, and TFa was finally synthesized by breaking the disulfide bond. Further, the synthesized TFa was utilized to modify silver nanoparticles. The results showed that TFa could be easily bonded to metal particles. The protocol could be extended to the synthesis of a series of thiolated derivatives of folate, such as mercaptohexyl folate, mercaptoundecyl folate, etc., which would greatly benefit the biological applications of FA.
Collapse
Affiliation(s)
- Jie Li
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liangang Shan
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Qian
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
ALkharashi NA. Efficacy of resveratrol against breast cancer and hepatocellular carcinoma cell lines. Saudi Med J 2023; 44:246-252. [PMID: 36940961 PMCID: PMC10043901 DOI: 10.15537/smj.2023.44.3.20220768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/25/2023] [Indexed: 03/22/2023] Open
Abstract
OBJECTIVES To evaluate the anti-cancer effect of resveratrol on Michigan cancer foundation-7 (MCF-7) and hepatoblastoma cell line (HepG2) cells. METHODS The study was carried out at the Department of Botany and Microbiology, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia, from August 2022 to October 2022. Different concentrations of resveratrol were added to the MCF-7 and HepG2 cell lines. Cell death and proliferation were measured with MTT and Trypan blue exclusion assays. Apoptosis markers were assessed by using a quantitative PCR assay (qPCR). RESULTS The resveratrol was shown to suppress the proliferation of MCF-7 and HepG2 cells at dose- and time-dependent. The cytotoxic effect of resveratrol was observed even at 100 μM after 24 hours. In comparison to untreated cells, resveratrol treatment reduced the viability of MCF-7 cells to roughly 57.5% with a half maximal inhibitory concentration (IC50) of 51.18 μM and HepG2 cells to 56.2% with an IC50 of 57.4 μM. Furthermore, in the tested cell lines, resveratrol was able to induce apoptosis mediated by elevated apoptosis markers. CONCLUSION Resveratrol appears to be an excellent candidate agent in anticancer therapy in various human cancers.
Collapse
Affiliation(s)
- Nouf A. ALkharashi
- From the Department of Home Eonomy, College of Education, Prince Sattam bin Abdulaziz University, Al-kharj, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Nazam N, Jabir NR, Ahmad I, Alharthy SA, Khan MS, Ayub R, Tabrez S. Phenolic Acids-Mediated Regulation of Molecular Targets in Ovarian Cancer: Current Understanding and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:274. [PMID: 37259418 PMCID: PMC9962268 DOI: 10.3390/ph16020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a global health concern with a dynamic rise in occurrence and one of the leading causes of mortality worldwide. Among different types of cancer, ovarian cancer (OC) is the seventh most diagnosed malignant tumor, while among the gynecological malignancies, it ranks third after cervical and uterine cancer and sadly bears the highest mortality and worst prognosis. First-line treatments have included a variety of cytotoxic and synthetic chemotherapeutic medicines, but they have not been particularly effective in extending OC patients' lives and are associated with side effects, recurrence risk, and drug resistance. Hence, a shift from synthetic to phytochemical-based agents is gaining popularity, and researchers are looking into alternative, cost-effective, and safer chemotherapeutic strategies. Lately, studies on the effectiveness of phenolic acids in ovarian cancer have sparked the scientific community's interest because of their high bioavailability, safety profile, lesser side effects, and cost-effectiveness. Yet this is a road less explored and critically analyzed and lacks the credibility of the novel findings. Phenolic acids are a significant class of phytochemicals usually considered in the nonflavonoid category. The current review focused on the anticancer potential of phenolic acids with a special emphasis on chemoprevention and treatment of OC. We tried to summarize results from experimental, epidemiological, and clinical studies unraveling the benefits of various phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid) in chemoprevention and as anticancer agents of clinical significance.
Collapse
Affiliation(s)
- Nazia Nazam
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur 613403, Tamil Nadu, India
| | - Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saif A. Alharthy
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Technology and Innovation Unit, Department of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Bozoglu S, Arvas MB, Varlı HS, Ucar B, Acar T, Karatepe N. Agglomerated serum albumin adsorbed protocatechuic acid coated superparamagnetic iron oxide nanoparticles as a theranostic agent. NANOTECHNOLOGY 2023; 34:145602. [PMID: 36623313 DOI: 10.1088/1361-6528/acb15b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Iron oxide nanoparticles have been one of the most widely used nanomaterials in biomedical applications. However, the incomplete understanding of the toxicity mechanisms limits their use in diagnosis and treatment processes. Many parameters are associated with their toxicity such as size, surface modification, solubility, concentration and immunogenicity. Further research needs to be done to address toxicity-related concerns and to increase its effectiveness in various applications. Herein, colloidally stable nanoparticles were prepared by coating magnetic iron oxide nanoparticles (MIONPs) with protocatechuic acid (PCA) which served as a stabilizer and a linkage for a further functional layer. A new perfusion agent with magnetic imaging capability was produced by the adsorption of biocompatible passivating agent macro-aggregated albumin (MAA) on the PCA-coated MIONPs. PCA-coated MIONPs were investigated using infrared spectroscopy, thermogravimetric analysis and dynamic light scattering while adsorption of MAA was analysed by transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray diffraction methods. Magnetic measurements of samples indicated that all samples showed superparamagnetic behaviour. Cytotoxicity results revealed that the adsorption of MAA onto PCA-coated MIONPs provided an advantage by diminishing their toxicity against the L929 mouse fibroblast cell line compared to bare Fe3O4.
Collapse
Affiliation(s)
- Serdar Bozoglu
- Institute of Energy, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Melih Besir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hanife Sevgi Varlı
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, Turkey
| | - Burcu Ucar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Nilgün Karatepe
- Institute of Energy, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
16
|
Rahimi HM, Nemati S, Alavifard H, Baghaei K, Mirjalali H, Zali MR. Soluble total antigen derived from Toxoplasma gondii RH strain prevents apoptosis, but induces anti-apoptosis in human monocyte cell line. Folia Parasitol (Praha) 2021; 68. [PMID: 34889779 DOI: 10.14411/fp.2021.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
Apoptosis plays crucial role in the pathogenesis of toxoplasmosis, as it limits further development of the disease. The current study aimed to investigate the effects of different concentrations of soluble total antigen (STAg) of Toxoplasma gondii (Nicolle et Manceaux, 1908) on the apoptotic and anti-apoptotic pathways. PMA-activated THP-1 cell line was sensed by T. gondii STAg and the expression patterns of caspase-3, -7, -8, -9, Bax, Bcl-2, and Mcl-1 genes were evaluated. The results showed statistically significant concentration-dependent overexpression of both Bcl-2 (P-value < 0.0001) and Mcl-1 (P-value = 0.0147). The cas-7 showed overexpression in all concentrations (P-value < 0.0001). The cas-3 was suppressed in concentrations 100, 80, and 40 µg, but statistically significant downregulated in concentrations 10 and 20 µg. The Bax was suppressed in concentrations 100 to 20 µg, while it slightly downregulated 1.42 fold (P-value = 0.0029) in concentration 10 µg. The expression of cas-8 and -9 was suppressed in all concentrations. Our results indicated that T. gondii STAg downregulated and suppressed apoptotic and upregulated anti-apoptotic pathways. The upregulation of cas-7 in this study may indicate the role of T. gondii STAg in activation of inflammatory responses.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran *Address for correspondence: Hamed Mirjalali, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran.
| |
Collapse
|
17
|
Wang Y, Li H, Li X, Wang C, Li Q, Xu M, Guan X, Lan Z, Ni Y, Zhang Y. Widely targeted metabolomics analysis of enriched secondary metabolites and determination of their corresponding antioxidant activities in Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice enhanced by Bifidobacterium animalis subsp. Lactis HN-3 fermentation. Food Chem 2021; 374:131568. [PMID: 34815112 DOI: 10.1016/j.foodchem.2021.131568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023]
Abstract
Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit contains a large number of naturally occurring molecules present as glycoside, methylated, and methyl ester conjugates, which should be hydolysed or transformed to become bioactive forms. For this purpose, Bifidobacterium animalis subsp. lactis HN-3 was selected to ferment Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice (EOJ). After fermentation, the total phenolic content (TPC) and antioxidant capacity of the EOJ increased significantly compared to the non-fermented EOJ. Using widely-targeted metabolomics analysis, polyphenolic compounds involved in the flavonoid biosynthetic pathway were determined to be up-regulated in the fermented EOJ. In addition, the metabolites generated by 8 deglycosidation, 5 demethylation, 5 hydrogenation, and 28 other reactions were detected in higher concentrations in the fermented EOJ compared to the non-fermented EOJ. Interestingly, these up-regulated metabolites have higher antioxidant and other biological activities than their metabolic precursors, which provide a theoretical basis for the development of Bifidobacterium-fermented plant products with stronger functional activities.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Hui Li
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Xiaozhen Li
- Shihezi Customs Comprehensive Laboratory, Urumqi Customs Technology Center, Road Tianshan, Shihezi Xinjiang Province 832099, China
| | - Chenxi Wang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Qianhong Li
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Meng Xu
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Xiangluo Guan
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Zhenghui Lan
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Yan Zhang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China.
| |
Collapse
|
18
|
Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S. Graphene Oxide Loaded with Protocatechuic Acid and Chlorogenic Acid Dual Drug Nanodelivery System for Human Hepatocellular Carcinoma Therapeutic Application. Int J Mol Sci 2021; 22:5786. [PMID: 34071389 PMCID: PMC8198262 DOI: 10.3390/ijms22115786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
Collapse
Affiliation(s)
- Kalaivani Buskaran
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, School of Biotechnology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Sharida Fakurazi
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| |
Collapse
|