1
|
Nguyen KA, Pachter R, Loftus LM, Hong G, Day PN, Azoulay JD, Grusenmeyer TA. Electronic Structures and Spectra of Donor-Acceptor Conjugated Oligomers. J Phys Chem A 2024; 128:9146-9158. [PMID: 39392140 DOI: 10.1021/acs.jpca.4c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Narrow band gap donor-acceptor conjugated polymers present excellent paradigms in photonics and optoelectronics due to their chemical tunability, correlated electronic structures, and tunable open-shell electronic configurations. However, rational design for enhancing the properties of these molecular systems remains challenging. In this study, we employed density functional theory (DFT) calculations to investigate prototypical narrow band gap donor-acceptor conjugated oligomers, consisting of alternating cyclopentadithiophene (CPDT) donors paired with benzothiadiazole (BT), benzoselenadiazole (BSe), benzobisthiadiazole (BBT), and thiadiazoloquinoxaline (TQ) acceptors. Analyses of structures, singlet-triplet gaps, and absorption spectra of oligomers with up to ten repeat units have shown that when incorporating the BT, BSe, and TQ acceptors, the backbone curvature resulted in spiral structures that were energetically favored over their linear counterparts, causing differences in the calculated circular dichroism spectra. Oligomers with BBT-based acceptors preferred, however, a linear geometry, consistent with an open-shell electronic structure. Calculated singlet-triplet splittings demonstrated the importance of long chains and specific structures for consistency with the experiment, while effects of the solvent were also quantified. Based on the predicted low-energy conformations, one-photon absorption spectra for the considered oligomers have shown that using the Tamm-Dancoff approximation within time-dependent DFT for the large systems offers good agreement with the first absorption maxima in measured experimental spectra, thus validating the method for large donor-acceptor oligomers. Natural transition orbital analyses provided insights into the excited-state characteristics. Two-photon absorption maxima were accurately predicted, but the cross-sections were overestimated or underestimated, as dependent on the level of theory employed, to be addressed in future work.
Collapse
Affiliation(s)
- Kiet A Nguyen
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Lauren M Loftus
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- Azimuth Corporation, Dayton, Ohio 45432, United States
| | - Gongyi Hong
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Paul N Day
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Jason D Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
2
|
Hynek J, Payne DT, Shrestha LK, Chahal MK, Ma R, Dong J, Ariga K, Yamauchi Y, Hill JP. Mild selective photochemical oxidation of an organic sulfide using OxP-polyimide porous polymers as singlet oxygen generators. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2322458. [PMID: 38440402 PMCID: PMC10911228 DOI: 10.1080/14686996.2024.2322458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 03/06/2024]
Abstract
A series of porous organic polymers based on a singlet oxygen generating oxoporphyinogen ('OxP') has been successfully prepared from a pseudotetrahedral OxP-tetraamine precursor (OxP(4-NH2Bn)4) by its reaction with tetracarboxylic acid dianhydrides under suitable conditions. Of the compounds studied, those containing naphthalene (OxP-N) and perylene (OxP-P) spacers, respectively, have large surface areas (~530 m2 g-1). On the other hand, the derivative with a simple benzene spacer (OxP-B) exhibits the best 1O2 generating capability. Although the starting OxP-tetraamine precursor is a poor 1O2 generator, its incorporation into OxP POPs leads to a significant enhancement of 1O2 productivity, which is largely due to the transformation of NH2 groups to electron-withdrawing diimides. Overall 1O2 production efficacy of OxP-POPs under irradiation by visible light is significantly improved over the common reference material PCN-222. All the materials OxP-B, OxP-N and OxP-P promote oxidation of thioanisole involving conversion of ambient triplet state oxygen to singlet oxygen under visible light irradiation and its reaction with the sulfide. Although the reaction rate of the oxidation promoted by OxP POPs is generally lower than for conventional materials (such as PCN-222) or previously studied OxP derivatives, undesired overoxidation of the substrate to methyl phenyl sulfone is suppressed. For organic sulfides, selectivity of oxidation is especially important for detoxification of mustard gas (bis(2-chloroethyl)sulfide) or similarly toxic compounds since controlled oxidation leads to the low toxicity bis(2-chloroethyl)sulfoxide while overoxidation leads to intoxification (since bis(2-chloroethyl)sulfone presents greater toxicity to humans than the sulfide substrate). Therefore, OxP POPs capable of promoting selective oxidation of sulfides to sulfoxides have excellent potential to be used as mild and selective detoxification agents.
Collapse
Affiliation(s)
- Jan Hynek
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Daniel T. Payne
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Lok Kumar Shrestha
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Mandeep K. Chahal
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Jiang Dong
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Yusuke Yamauchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jonathan P. Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
3
|
Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Control Release 2023; 362:425-445. [PMID: 37660989 DOI: 10.1016/j.jconrel.2023.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phototherapy (including photothermal therapy, PTT; and photodynamic therapy, PDT) has been widely used for cancer treatment, but conventional PTT/PDT show limited therapeutic effects due to the lack of disease recognition ability. The integration of fluorescence imaging with PTT/PDT can reveal tumor locations in a real-time manner, holding great potential in early diagnosis and precision treatment of cancers. However, the traditional fluorescence imaging in the visible and near-infrared-I regions (VIS/NIR-I, 400-900 nm) might be interfered by the scattering and autofluorescence from tissues, leading to a low imaging resolution and high false positive rate. The deeper near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging can address these interferences. Combining NIR-II fluorescence imaging with PTT/PDT can significantly improve the accuracy of tumor theranostics and minimize damages to normal tissues. This review summarized recent advances in tumor PTT/PDT and NIR-II fluorophores, especially discussed achievements, challenges and prospects around NIR-II fluorescence imaging-guided PTT/PDT for cancers.
Collapse
Affiliation(s)
- Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shuai Gao
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Preparation of Cotton-Zinc Composites by Magnetron Sputtering Metallization and Evaluation of their Antimicrobial Properties and Cytotoxicity. MATERIALS 2022; 15:ma15082746. [PMID: 35454445 PMCID: PMC9026216 DOI: 10.3390/ma15082746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
The aim of this investigation was to evaluate the biological properties of cotton-zinc composites. A coating of zinc (Zn) on a cotton fabric was successfully obtained by a DC magnetron sputtering system using a metallic Zn target (99.9%). The new composite was characterized using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), UV/Vis transmittance, and atomic absorption spectrometry with flame excitation (FAAS). The composite was tested for microbial activity against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and antifungal activity against Aspergillus niger and Chaetomium globosum fungal mold species as model microorganisms. Cytotoxicity screening of the tested modified material was carried out on BALB/3T3 clone mouse fibroblasts. The SEM/EDS and FAAS tests showed good uniformity of zinc content on a large surface of the composite. The conducted research showed the possibility of using the magnetron sputtering technique as a zero-waste method for producing antimicrobial textile composites.
Collapse
|
5
|
|
6
|
Zha M, Yang G, Li Y, Zhang C, Li B, Li K. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy. Adv Healthc Mater 2021; 10:e2101066. [PMID: 34519181 DOI: 10.1002/adhm.202101066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Cancer, one of the leading causes of death, has seriously threatened public health. However, there is still a lack of effective treatments. Nowadays, photodynamic therapy (PDT), relying on photosensitizers to trigger the generation of reactive oxygen species (ROS) for killing cancer cells, has been emerging as a noninvasive anti-cancer strategy. To enhance the overall anti-cancer efficacy of PDT, various approaches including molecular design and combination with other therapeutic techniques have been proposed and implemented. Especially, photodynamic immunotherapy that can effectively evoke the body's immune response has attracted much attention. Recently, a class of photosensitizers with aggregation-induced emission (AIE) character have shown unique promises, taking advantage of their profound fluorescence and ROS-generating ability in the aggregation state. Despite the promising results demonstrated by several groups, the associated studies are few and the mechanism of such AIEgen-based photodynamic immunotherapy has not been fully understood. This review discusses the recent advances in the AIEgen-based enhanced PDT with a special focus on the AIE photosensitizers for photodynamic immunotherapy, aiming to inspire more opportunities for in-depth investigation of the working principles in this emerging anti-cancer approach.
Collapse
Affiliation(s)
- Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Chen Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Bo Li
- Department of Cardiology Shandong University Central Hospital of Zibo NO.10 South Shanghai Road Zibo 255000 China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
7
|
Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:783354. [PMID: 34805129 PMCID: PMC8599151 DOI: 10.3389/fbioe.2021.783354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.
Collapse
Affiliation(s)
- Zhijia Wang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Fu-Jian Xu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Bingran Yu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Pluronic stabilized conjugated polymer nanoparticles for NIR fluorescence imaging and dual phototherapy applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|