1
|
Waldmann M, Bohner M, Baghnavi A, Riedel B, Seidenstuecker M. Release kinetics of growth factors loaded into β-TCP ceramics in an in vitro model. Front Bioeng Biotechnol 2024; 12:1441547. [PMID: 39398641 PMCID: PMC11466813 DOI: 10.3389/fbioe.2024.1441547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction β-TCP ceramics are bone replacement materials that have recently been tested as a drug delivery system that can potentially be applied to endogenous substances like growth factors found in blood platelets to facilitate positive attributes. Methods In this work, we used flow chamber loading to load β-TCP dowels with blood suspensions of platelet-rich plasma (PRP), platelet-poor plasma (PPP), or buffy coat (BC) character. PRP and BC platelet counts were adjusted to the same level by dilution. Concentrations of TGF-β1, PDGF-AB, and IGF-1 from dowel-surrounding culture medium were subsequently determined using ELISA over 5 days. The influence of alginate was additionally tested to modify the release. Results Concentrations of TGF-β1 and PDGF-AB increased and conclusively showed a release from platelets in PRP and BC compared to PPP. The alginate coating reduced the PDGF-AB release but did not reduce TGF-β1 and instead even increased TGF-β1 in the BC samples. IGF-1 concentrations were highest in PPP, suggesting circulating levels rather than platelet release as the driving factor. Alginate samples tended to have lower IGF-1 concentrations, but the difference was not shown to be significant. Discussion The release of growth factors from different blood suspensions was successfully demonstrated for β-TCP as a drug delivery system with release patterns that correspond to PRP activation after Ca2+-triggered activation. The release pattern was partially modified by alginate coating.
Collapse
Affiliation(s)
- Marco Waldmann
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Anna Baghnavi
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bianca Riedel
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Zöller T, Schmal H, Ahlhelm M, Mayr HO, Seidenstuecker M. Conventional Manufacturing by Pouring Versus Additive Manufacturing Technology of β-Tricalcium Phosphate Bone Substitute Implants. Biomedicines 2024; 12:1800. [PMID: 39200264 PMCID: PMC11351892 DOI: 10.3390/biomedicines12081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of the study was to compare conventional sintering with additive manufacturing techniques for β-TCP bioceramics, focusing on mechanical properties and biocompatibility. A "critical" bone defect requires surgical intervention beyond simple stabilization. Autologous bone grafting is the gold standard treatment for such defects, but it has its limitations. Alloplastic bone grafting with synthetic materials is becoming increasingly popular. The use of bone graft substitutes has increased significantly, and current research has focused on optimizing these substitutes, whereas this study compares two existing manufacturing techniques and the resulting β-TCP implants. The 3D printed β-TCP hybrid structure implant was fabricated from two components, a column structure and a freeze foam, which were sintered together. The conventionally fabricated ceramics were fabricated by casting. Both scaffolds were characterized for porosity, mechanical properties, and biocompatibility. The hybrid structure had an overall porosity of 74.4 ± 0.5%. The microporous β-TCP implants had a porosity of 43.5 ± 2.4%, while the macroporous β-TCP implants had a porosity of 61.81%. Mechanical testing revealed that the hybrid structure had a compressive strength of 10.4 ± 6 MPa, which was significantly lower than the microporous β-TCP implants with 32.9 ± 8.7 MPa. Biocompatibility evaluations showed a steady increase in cell proliferation over time for all the β-TCP implants, with minimal cytotoxicity. This study provides a valuable insight into the potential of additive manufacturing for β-TCP bioceramics in the treatment of bone defects.
Collapse
Affiliation(s)
- Tanja Zöller
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany;
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (H.S.); (H.O.M.)
- Department of Orthopedic Surgery and Traumatology, Odense University Hospital, 5000 Odense, Denmark
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany;
| | - Hermann O. Mayr
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (H.S.); (H.O.M.)
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany;
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (H.S.); (H.O.M.)
| |
Collapse
|
3
|
Seidenstuecker M, Hess J, Baghnavi A, Schmal H, Voigt D, Mayr HO. Biodegradable composites with antibiotics and growth factors for dual release kinetics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:40. [PMID: 39073605 PMCID: PMC11286658 DOI: 10.1007/s10856-024-06809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Bone infections are still a major problem in surgery. To avoid severe side effects of systemically administered antibiotics, local antibiotic therapy is increasingly being considered. Using a pressure-based method developed in our group, microporous β-TCP ceramics, which had previously been characterized, were loaded with 2% w/v alginate containing 50 mg/mL clindamycin and 10 µg/mL rhBMP-2. Release experiments were then carried out over 28 days with changes of liquid at defined times (1, 2, 3, 6, 9, 14, 21 and 28d). The released concentrations of clindamycin were determined by HPLC and those of rhBMP-2 by ELISA. Continuous release (anomalous transport) of clindamycin and uniform release (Fick's diffusion) of BMP-2 were determined. The composites were biocompatible (live/dead, WST-I and LDH) and the released concentrations were all antimicrobially active against Staph. aureus. The results were very promising and clindamycin was detected in concentrations above the MIC as well as a constant rhBMP-2 release over the entire study period. Biocompatibility was also not impaired by either the antibiotic or the BMP-2. This promising approach can therefore be seen as an alternative to the common treatment with PMMA chains containing gentamycin, as the new composite is completely biodegradable and no second operation is necessary for removal or replacement.
Collapse
Affiliation(s)
- Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesser Str. 4, 79108, Freiburg, Germany.
| | - Julian Hess
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesser Str. 4, 79108, Freiburg, Germany
| | - Anna Baghnavi
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesser Str. 4, 79108, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Diana Voigt
- FILK Freiberg Institute gGmbH, Meissner Ring 1-5, 09599, Freiberg, Germany
| | - Hermann O Mayr
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
4
|
Ritschl L, Schilling P, Wittmer A, Serr A, Schmal H, Seidenstuecker M. Dual release of daptomycin and BMP-2 from a composite of β-TCP ceramic and ADA gelatin. BMC Biotechnol 2024; 24:38. [PMID: 38831403 PMCID: PMC11149308 DOI: 10.1186/s12896-024-00863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of microporous β-TCP ceramic and alginate has been reported in previous works. Alginate dialdehyde (ADA) gelatin gel showed both better mechanical properties when loaded into a β-TCP ceramic and higher biodegradability than pure alginate. METHODS Dual release of daptomycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21, and 28 by HPLC and ELISA. After release, the microbial efficacy of the daptomycin was verified and the biocompatibility of the composite was tested in cell culture. RESULTS Daptomycin and the model compound FITC protein A (n = 30) were released from the composite over 28 days. A Daptomycin release above the minimum inhibitory concentration (MIC) by day 9 and a burst release of 71.7 ± 5.9% were observed in the loaded ceramics. Low concentrations of BMP-2 were released from the loaded ceramics over 28 days.
Collapse
Affiliation(s)
- Lucas Ritschl
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center- Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Pia Schilling
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center- Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Annette Wittmer
- Institute of Microbiology and Hygiene, Faculty of Medicine, Medical Center Albert-Ludwigs-University of Freiburg, Hermann- Herder-Straße 11, 79104, Freiburg, Germany
| | - Annerose Serr
- Institute of Microbiology and Hygiene, Faculty of Medicine, Medical Center Albert-Ludwigs-University of Freiburg, Hermann- Herder-Straße 11, 79104, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center- Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
5
|
Waldmann M, Bohner M, Le LQRV, Baghnavi A, Riedel B, Seidenstuecker M. A model approach to show that monocytes can enter microporous β-TCP ceramics. BMC Biotechnol 2024; 24:32. [PMID: 38750469 PMCID: PMC11097456 DOI: 10.1186/s12896-024-00857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
β-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous β-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter β-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm β-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in β-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and β-TCP.
Collapse
Affiliation(s)
- Marco Waldmann
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - Marc Bohner
- Robert Mathys Foundation RMS, Bischmattstr. 12, 2544, Bettlach, Switzerland
| | - Long-Quan R V Le
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Anna Baghnavi
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Bianca Riedel
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
6
|
Waldmann M, Bohner M, Baghnavi A, Riedel B, Seidenstuecker M. Awareness for artifacts in fluorescence microscopy of β-TCP. BMC Res Notes 2024; 17:122. [PMID: 38685087 PMCID: PMC11059721 DOI: 10.1186/s13104-024-06781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Fluorescence analysis of β-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.
Collapse
Affiliation(s)
- Marco Waldmann
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - Marc Bohner
- Robert Mathys Foundation RMS, Bischmattstr. 12, Bettlach, 2544, Switzerland
| | - Anna Baghnavi
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Bianca Riedel
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
7
|
Ritschl L, Schilling P, Wittmer A, Bohner M, Bernstein A, Schmal H, Seidenstuecker M. Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:39. [PMID: 37498466 PMCID: PMC10374674 DOI: 10.1007/s10856-023-06743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The aim of this study was to produce a composite of microporous β-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous β-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from β-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.
Collapse
Affiliation(s)
- Lucas Ritschl
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108, Freiburg, Germany.
| | - Pia Schilling
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108, Freiburg, Germany
| | - Annette Wittmer
- Medical Center Albert-Ludwigs-University of Freiburg, Institute of Microbiology and Hygiene, Hermann-Herder-Straße 11, 79104, Freiburg, Germany
| | - Marc Bohner
- Robert Mathys Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108, Freiburg, Germany.
| |
Collapse
|
8
|
Kuehling T, Schilling P, Bernstein A, Mayr HO, Serr A, Wittmer A, Bohner M, Seidenstuecker M. A human bone infection organ model for biomaterial research. Acta Biomater 2022; 144:230-241. [PMID: 35304323 DOI: 10.1016/j.actbio.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
The aim of this work was to establish an organ model for staphylococcal infection of human bone samples and to investigate the influence and efficacy of a microporous β-tricalcium phosphate ceramic (β-TCP, RMS Foundation) loaded with hydrogels (alginate, alginate-di-aldehyde (ADA)-gelatin) and clindamycin on infected human bone tissue over a period of 28 days. For this purpose, human tibia plateaus, collected during total knee replacement surgery, were used as a source of bone material. Samples were infected with S. aureus ATCC29213 and treated with differently loaded β-TCP composites (alginate +/- clindamycin, ADA-gelatin +/- clindamycin, unloaded). The loading of the composites was carried out by means of a flow chamber. The infection was observed for 28 days, quantifying bacteria in the medium and the osseus material on day 1, 7, 14, 21 and 28. All samples were histologically processed for bone vitality evaluation. Bone infection could be consistently performed within the organ model. In addition, a strong reduction in bacterial counts was recorded in the groups treated with ADA-gelatin + clindamycin and alginate + clindamycin, while the bacterial count in the control groups remained constant. No significant differences between groups could be observed in the number of lacunae filled with osteocytes suggesting no differences in bone vitality among groups. In an ex-vivo human bone infection model, over a period of 28 days bacterial growth could be reduced by treatment with ADA-Gel + CLI and ALG + CLI -releasing β-TCP composites. This could be relevant for its clinical use. Further work will be necessary to improve the loading of β-TCP and the bone infection organ model itself. STATEMENT OF SIGNIFICANCE: The common treatment of bone infections is debridement and systemic administration of antibiotics. In some cases, antibiotic-containing carriers are already used, but these must be removed again. Our work is intended to show another treatment option. The scaffold we have developed, made of a calcium phosphate ceramic and a hydrogel as the active substance carrier, can, in addition to releasing the active substance, also assume a load-bearing function of the bone and is biodegradable. In addition, the model we developed can also be used for the analysis and treatment of bone infections other than those of the musculoskeletal system. More importantly, it can also serve as a substitute for previously used animal experiments.
Collapse
|
9
|
Mechanically Stable β-TCP Structural Hybrid Scaffolds for Potential Bone Replacement. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The authors report on the manufacturing of mechanically stable β-tricalcium phosphate (β-TCP) structural hybrid scaffolds via the combination of additive manufacturing (CerAM VPP) and Freeze Foaming for engineering a potential bone replacement. In the first step, load bearing support structures were designed via FE simulation and 3D printed by CerAM VPP. In the second step, structures were foamed-in with a porous and degradable calcium phosphate (CaP) ceramic that mimics porous spongiosa. For this purpose, Fraunhofer IKTS used a process known as Freeze Foaming, which allows the foaming of any powdery material and the foaming-in into near-net-shape structures. Using a joint heat treatment, both structural components fused to form a structural hybrid. This bone construct had a 25-fold increased compressive strength compared to the pure CaP Freeze Foam and excellent biocompatibility with human osteoblastic MG-63 cells when compared to a bone grafting Curasan material for benchmark.
Collapse
|