1
|
Phewchan P, Laoruengthana A, Chomchalao P, Lamlertthon S, Tiyaboonchai W. Vancomycin-Loaded Silk Fibroin/Calcium Phosphate/Methylcellulose-Based In Situ Thermosensitive Hydrogel: A Potential Function for Bone Regeneration. Gels 2024; 10:695. [PMID: 39590051 PMCID: PMC11594143 DOI: 10.3390/gels10110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the efficacy of a vancomycin-loaded silk fibroin/calcium phosphate/methylcellulose-based in situ thermosensitive hydrogel (VM-SF/CaP/MC) in promoting the osteogenic differentiation of preosteoblast cells. Three VM-SF/CaP/MC formulations with varying low (L) and high (H) concentrations of silk fibroin (SF) and calcium phosphate (CaP) were prepared: VM-HSF/LCaP/MC, VM-LSF/HCaP/MC, and VM-HSF/HCaP/MC. These hydrogels significantly enhanced MC3T3-E1 cell migration and proliferation in a dose- and time-dependent manner, achieving complete cell migration within 48 h. In addition, they significantly promoted alkaline phosphatase activity, collagen content, and mineralization in MC3T3-E1 cells, indicating their potential for osteogenesis. Among the hydrogel formulations, the VM-HSF/HCaP/MC hydrogel, with high SF and CaP content, demonstrated superior potential in promoting the osteogenic differentiation of MC3T3-E1 cells. It exhibited the highest ALP activity (11.13 ± 0.91 U/mg protein) over 14 days, along with increased collagen content (54.00 ± 1.71 µg/mg protein) and mineralization (15.79 ± 1.48 mM) over 35 days. Therefore, this formulation showed a promising candidate for clinical application in localized bone regeneration, particularly in treating osteomyelitis.
Collapse
Affiliation(s)
- Premchirakorn Phewchan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Artit Laoruengthana
- Department of Orthopedics, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
| | - Pratthana Chomchalao
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Supaporn Lamlertthon
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- The Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
García-Sobrino R, Casado-Losada I, Caltagirone C, García-Crespo A, García C, Rodríguez-Hernández J, Reinecke H, Gallardo A, Elvira C, Martínez-Campos E. Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO 2-SAS. Pharmaceutics 2024; 16:1063. [PMID: 39204408 PMCID: PMC11359487 DOI: 10.3390/pharmaceutics16081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
New clinical strategies for treating severe bone and cartilage injuries are required, especially for use in combination with implant procedures. For this purpose, p(VCL-co-HEMA) thermosensitive hydrogels have been activated with icariin-loaded nanoparticles to be used as bone-cell-harvesting platforms. Supercritical CO2-SAS technology has been applied to encapsulate icariin, a small molecule that is involved in osteoblastic differentiation. Thus, physical-chemical analysis, including swelling and transmittance, showed the impact of HEMA groups in hydrogel composition. Moreover, icariin (ICA) release from p(VCL-co-HEMA) platforms, including pVCL@ICA nanoparticles, has been studied to evaluate their efficacy in relevant conditions. Finally, the thermosensitive hydrogels' cell compatibility, transplant efficiency, and bone differentiation capacity were tested. This study identifies the optimal formulations for icariin-activated hydrogels for both control and HEMA formulations. Using this technique, osteoblastic sheets that were rich in collagen type I were successfully transplanted and recultivated, maintaining an optimal extracellular matrix (ECM) composition. These findings suggest a new cell-sheet-based therapy for bone regeneration purposes using customized and NP-activated pVCL-based cell platforms.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Isabel Casado-Losada
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Carmen Caltagirone
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Ana García-Crespo
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Carolina García
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Helmut Reinecke
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Alberto Gallardo
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Carlos Elvira
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Enrique Martínez-Campos
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| |
Collapse
|
3
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
4
|
Shymborska Y, Budkowski A, Raczkowska J, Donchak V, Melnyk Y, Vasiichuk V, Stetsyshyn Y. Switching it Up: The Promise of Stimuli-Responsive Polymer Systems in Biomedical Science. CHEM REC 2024; 24:e202300217. [PMID: 37668274 DOI: 10.1002/tcr.202300217] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Indexed: 09/06/2023]
Abstract
Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.
Collapse
Affiliation(s)
- Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Andrzej Budkowski
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Joanna Raczkowska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Volodymyr Donchak
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| | - Yuriy Melnyk
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| | - Viktor Vasiichuk
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| |
Collapse
|
5
|
Ligarda-Samanez CA, Moscoso-Moscoso E, Choque-Quispe D, Ramos-Pacheco BS, Arévalo-Quijano JC, la Cruz GD, Huamán-Carrión ML, Quispe-Quezada UR, Gutiérrez-Gómez E, Cabel-Moscoso DJ, Muñoz-Melgarejo M, Calsina Ponce WC. Native Potato Starch and Tara Gum as Polymeric Matrices to Obtain Iron-Loaded Microcapsules from Ovine and Bovine Erythrocytes. Polymers (Basel) 2023; 15:3985. [PMID: 37836034 PMCID: PMC10575126 DOI: 10.3390/polym15193985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Iron deficiency leads to ferropenic anemia in humans. This study aimed to encapsulate iron-rich ovine and bovine erythrocytes using tara gum and native potato starch as matrices. Solutions containing 20% erythrocytes and different proportions of encapsulants (5, 10, and 20%) were used, followed by spray drying at 120 and 140 °C. Iron content in erythrocytes ranged between 2.24 and 2.52 mg of Fe/g; microcapsules ranged from 1.54 to 2.02 mg of Fe/g. Yields varied from 50.55 to 63.40%, and temperature and encapsulant proportion affected moisture and water activity. Various red hues, sizes, and shapes were observed in the microcapsules. SEM-EDS analysis revealed the surface presence of iron in microcapsules with openings on their exterior, along with a negative zeta potential. Thermal and infrared analyses confirmed core encapsulation within the matrices. Iron release varied between 92.30 and 93.13% at 120 min. Finally, the most effective treatments were those with higher encapsulant percentages and dried at elevated temperatures, which could enable their utilization in functional food fortification to combat anemia in developing countries.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Germán De la Cruz
- Agricultural Science Faculty, Universidad Nacional de San Cristobal de Huamanga, Ayacucho 05000, Peru;
| | - Mary L. Huamán-Carrión
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
| | - Uriel R. Quispe-Quezada
- Agricultural and Forestry Business Engineering, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru;
| | - Edgar Gutiérrez-Gómez
- Engineering and Management Faculty, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru;
| | | | | | | |
Collapse
|
6
|
Metze FK, Filipucci I, Klok HA. Supramolecular Polymer Brushes Grown by Surface-Initiated Atom Transfer Radical Polymerization from Cucurbit[7]uril-based Non-Covalent Initiators. Angew Chem Int Ed Engl 2023; 62:e202305930. [PMID: 37395306 DOI: 10.1002/anie.202305930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
Polymer brushes are densely grafted, chain end-tethered assemblies of polymers that can be produced via surface-initiated polymerization. Typically, this is accomplished using initiators or chain transfer agents that are covalently attached to the substrate. This manuscript reports an alternative route towards polymer brushes, which involves the use of non-covalent cucurbit[7]uril-adamantane host-guest interactions to surface-immobilize initiators for atom transfer radical polymerization. These non-covalent initiators can be used for the surface-initiated atom transfer radical polymerization of a variety of water-soluble methacrylate monomers to generate supramolecular polymer brushes with film thicknesses of more than 100 nm. The non-covalent nature of the initiator also allows facile access to patterned polymer brushes, which can be produced in straightforward fashion by drop-casting a solution of the initiator-modified guest molecules onto a substrate that presents the cucurbit[7]uril host.
Collapse
Affiliation(s)
- Friederike K Metze
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station12, 1015, Lausanne, Switzerland
| | - Irene Filipucci
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station12, 1015, Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station12, 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel) 2023; 15:2601. [PMID: 37376247 PMCID: PMC10303232 DOI: 10.3390/polym15122601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.
Collapse
Affiliation(s)
- Faisal Dakhelallah Al-Shalawi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Azmah Hanim Mohamed Ariff
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
- Research Center Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dong-Won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Mohd Khairol Anuar Mohd Ariffin
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Collin Looi Seng Kim
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dermot Brabazon
- Advanced Manufacturing Research Centre, and Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 V209 Dublin 9, Ireland;
| | - Maha Obaid Al-Osaimi
- Department of Microbiology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
8
|
Nagase K, Wakayama H, Matsuda J, Kojima N, Kanazawa H. Thermoresponsive mixed polymer brush to effectively control the adhesion and separation of stem cells by altering temperature. Mater Today Bio 2023; 20:100627. [PMID: 37122838 PMCID: PMC10130502 DOI: 10.1016/j.mtbio.2023.100627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
During the last few decades, thermoresponsive materials for modulating cell adhesion have been investigated for the application of tissue engineering. In this study, we developed thermoresponsive mixed polymer brushes consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm). The mixed polymer brushes were prepared on a glass substrate via the reversible addition-fragmentation chain transfer polymerization of DMAPAAm and subsequent atom transfer radical polymerization of NIPAAm. The mixed polymer brushes grafted to glass exhibited increased cationic properties by increasing the grafted PDMAPAAm length. The shrinking and extension of PNIPAAm exposed and concealed PDMAPAAm, respectively, indicating that the surface cationic properties can be controlled by changing the temperature. At 37 °C, the prepared mixed polymer brushes enhanced cell adhesion through their electrostatic interactions with cells. They also exhibited various thermoresponsive adhesion and detachment properties using various types of cells, such as mesenchymal stem cells. Temperature-controlled cell adhesion and detachment behavior differed between cell types. Using the prepared mixed polymer brush, we separated MSCs from adipocytes and HeLa cells by simply changing the temperature. Thus, the thermoresponsive mixed polymer brushes may be used to separate mesenchymal stem cells from their differentiated or contaminant cells by altering the temperature.
Collapse
|
9
|
Ghadiri Soltan Meydan T, Samareh Moosavi S, Sabouri Z, Darroudi M. Green synthesis of CaCO 3 nanoparticles for photocatalysis and cytotoxicity. Bioprocess Biosyst Eng 2023; 46:727-734. [PMID: 36944802 DOI: 10.1007/s00449-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
In this study, Gum Arabic natural polymer was used to green synthesize calcium carbonate nanoparticles (CaCO3-NPs). Synthesized CaCO3-NPs were identified using various analyses such as FTIR, XRD, FESEM, EDX, and UV-Vis. The UV spectrum of nanoparticles showed an absorption band at a wavelength of 320 nm. FTIR analysis also confirmed the synthesis of nanoparticles. XRD studies showed that CaCO3-NPs have a rhombohedral crystalline structure with space group R-3c and an average size of about 42 nm. FESEM images showed that CaCO3-NPs have cubic morphology and EDX results confirmed the presence of carbon, calcium, and oxygen elements. The synthesized CaCO3-NPs showed good photocatalytic activity to methylene blue (MB) dye degradation, which percentage degradation was 93% after 120 min. Also, the cytotoxicity of CaCO3-NPs has been examined on the normal L929 and cancer CT26 cell lines and the IC50 value was about 250 µg/mL for cancer cells.
Collapse
Affiliation(s)
| | | | - Zahra Sabouri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Preparation and Synergistic Effect of Biomimetic Poly(lactic acid)/Graphene Oxide Composite Scaffolds Loaded with Dual Drugs. Polymers (Basel) 2022; 14:polym14245348. [PMID: 36559717 PMCID: PMC9784114 DOI: 10.3390/polym14245348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
To promote the bone repair ability of drug-loaded scaffolds, poly(lactic acid) (PLA)/graphene oxide (GO)/Salvianolic acid B (Sal-B)/aspirin (ASA) dual drug-loaded biomimetic composite scaffolds were prepared. The results showed that the addition of these two drugs delayed the gel formation of the composite system, but a biomimetic nanofiber structure could still be obtained by extending the gel time. The addition of Sal-B increased the hydrophilicity of the scaffold, while an increase in ASA reduced the porosity. Dual drug-loaded scaffolds had good haemocompatibility and synergically promoted the proliferation of MC3T3-E1 cells and enhanced alkaline phosphatase activity. Sustained-release experiments of the two drugs showed that the presence of ASA slowed the cumulative release of Sal-B, while Sal-B promoted the release of ASA. Kinetic modeling showed that the release of both drugs conforms to the Korsmeyer-Peppas model, but Sal-B conforms to the Fick diffusion mechanism and ASA follows Fick diffusion and carrier swelling/dissolution.
Collapse
|
11
|
Ashraf J, Lau S, Akbarinejad A, Evans CW, Williams DE, Barker D, Travas-Sejdic J. Conducting Polymer-Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface. BIOSENSORS 2022; 12:1143. [PMID: 36551110 PMCID: PMC9775683 DOI: 10.3390/bios12121143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting polymers-based biointerfaces have emerged as advanced surfaces for interfacing biological tissues and organs with electronics. Antifouling of such biointerfaces is a challenge. In this study, we fabricated electrospun fibre mats from sulphonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (sSEBS), infused with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) (sSEBS-PEDOT), to produce a conductive (2.06 ± 0.1 S/cm), highly porous, fibre mat that can be used as a biointerface in bioelectronic applications. To afford antifouling, here the poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes were grafted onto the sSEBS-PEDOT conducting fibre mats via surface-initiated atom transfer radical polymerization technique (SI-ATRP). For that, a copolymer of EDOT and an EDOT derivative with SI-ATRP initiating sites, 3,4-ethylenedioxythiophene) methyl 2-bromopropanoate (EDOTBr), was firstly electropolymerized on the sSEBS-PEDOT fibre mat to provide sSEBS-PEDOT/P(EDOT-co-EDOTBr). The POEGMA brushes were grafted from the sSEBS-PEDOT/P(EDOT-co-EDOTBr) and the polymerization kinetics confirmed the successful growth of the brushes. Fibre mats with 10-mers and 30-mers POEGMA brushes were studied for antifouling using a BCA protein assay. The mats with 30-mers grafted brushes exhibited excellent antifouling efficiency, ~82% of proteins repelled, compared to the pristine sSEBS-PEDOT fibre mat. The grafted fibre mats exhibited cell viability >80%, comparable to the standard cell culture plate controls. Such conducting, porous biointerfaces with POEGMA grafted brushes are suitable for applications in various biomedical devices, including biosensors, liquid biopsy, wound healing substrates and drug delivery systems.
Collapse
Affiliation(s)
- Jesna Ashraf
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Sandy Lau
- Hub for Extracellular Vesicles Investigation (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1010, New Zealand
| | - Alireza Akbarinejad
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Clive W. Evans
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - David E. Williams
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
12
|
Kim SY, Choi AJ, Park JE, Jang YS, Lee MH. Antibacterial Activity and Biocompatibility with the Concentration of Ginger Fraction in Biodegradable Gelatin Methacryloyl (GelMA) Hydrogel Coating for Medical Implants. Polymers (Basel) 2022; 14:polym14235317. [PMID: 36501711 PMCID: PMC9737906 DOI: 10.3390/polym14235317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
The gingerols and shogaols derived from ginger have excellent antibacterial properties against oral bacteria. However, some researchers have noted their dose-dependent potential toxicity. The aim of this study was to enhance the biofunctionality and biocompatibility of the application of ginger to dental titanium screws. To increase the amount of coating of the n-hexane-fractionated ginger on the titanium surface and to control its release, ginger was loaded in different concentrations in a photo-crosslinkable GelMA hydrogel. To improve coating stability of the ginger hydrogel (GH), the wettability of the surface was modified by pre-calcification (TNC), then GH was applied on the surface. As a result, the ginger fraction, with a high content of phenolic compounds, was effective in the inhibition of the growth of S. mutans and P. gingivalis. The GH slowly released the main compounds of ginger and showed excellent antibacterial effects with the concentration. Although bone regeneration was slightly reduced with the ginger-loading concentration due to the increased contents of polyphenolic compounds, it was strongly supplemented through the promotion of osteosis formation by the hydrogel and TNC coating. Finally, we proved the biosafety and superior biofunctionalities the GH-TNC coating on a Ti implant. However, it is recommended to use an appropriate concentration, because an excessive concentration of ginger may affect the improved biocompatibility in clinical applications.
Collapse
Affiliation(s)
- Seo-young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ae-jin Choi
- Division of Functional Food & Nutrition, Department of Agrofood Resources, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA), Wanju-gun 55365, Republic of Korea
| | - Jung-Eun Park
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yong-seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: (Y.-s.J.); (M.-h.L.); Tel.: +82-63-270-4040 (Y.-s.J. & M.-h.L.)
| | - Min-ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: (Y.-s.J.); (M.-h.L.); Tel.: +82-63-270-4040 (Y.-s.J. & M.-h.L.)
| |
Collapse
|
13
|
Kotoulas KT, Campbell J, Skirtach AG, Volodkin D, Vikulina A. Surface Modification with Particles Coated or Made of Polymer Multilayers. Pharmaceutics 2022; 14:2483. [PMID: 36432674 PMCID: PMC9697854 DOI: 10.3390/pharmaceutics14112483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The coating of particles or decomposable cores with polyelectrolytes via Layer-by-Layer (LbL) assembly creates free-standing LbL-coated functional particles. Due to the numerous functions that their polymers can bestow, the particles are preferentially selected for a plethora of applications, including, but not limited to coatings, cargo-carriers, drug delivery vehicles and fabric enhancements. The number of publications discussing the fabrication and usage of LbL-assembled particles has consistently increased over the last vicennial. However, past literature fails to either mention or expand upon how these LbL-assembled particles immobilize on to a solid surface. This review evaluates examples of LbL-assembled particles that have been immobilized on to solid surfaces. To aid in the formulation of a mechanism for immobilization, this review examines which forces and factors influence immobilization, and how the latter can be confirmed. The predominant forces in the immobilization of the particles studied here are the Coulombic, capillary, and adhesive forces; hydrogen bonding as well as van der Waal's and hydrophobic interactions are also considered. These are heavily dependent on the factors that influenced immobilization, such as the particle morphology and surface charge. The shape of the LbL particle is related to the particle core, whereas the charge was dependant on the outermost polyelectrolyte in the multilayer coating. The polyelectrolytes also determine the type of bonding that a particle can form with a solid surface. These can be via either physical (non-covalent) or chemical (covalent) bonds; the latter enforcing a stronger immobilization. This review proposes a fundamental theory for immobilization pathways and can be used to support future research in the field of surface patterning and for the general modification of solid surfaces with polymer-based nano- and micro-sized polymer structures.
Collapse
Affiliation(s)
- Konstantinos T. Kotoulas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Andre G. Skirtach
- Bio-Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| |
Collapse
|
14
|
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers (Basel) 2022; 14:polym14194245. [PMID: 36236192 PMCID: PMC9571834 DOI: 10.3390/polym14194245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed.
Collapse
|
15
|
Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04959-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Filipović VV, Babić Radić MM, Vuković JS, Vukomanović M, Rubert M, Hofmann S, Müller R, Tomić SL. Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite. Polymers (Basel) 2021; 14:18. [PMID: 35012041 PMCID: PMC8747754 DOI: 10.3390/polym14010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component, nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer, to be able to tune the structure and the physicochemical and mechanical properties, and a natural polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied. The goal was to make a new material with superior properties for applications in the biomedical field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegradable PHEMA hydrogel was obtained by crosslinking HEMA by poly(β-amino esters) (PBAE). The scaffold's physicochemical and mechanical properties, in vitro degradation, and biological activity were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin) hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity, swelling, porosity, and percent of mass loss during degradation than the samples obtained by porogenation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss, and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate, which was 15-20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of culture was higher in the composites, although not statistically different. After 28 days, cell metabolic activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which influenced the mechanical behavior, structure, physicochemical properties, and interactions with biological species.
Collapse
Affiliation(s)
- Vuk V. Filipović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, 11000 Belgrade, Serbia;
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia; (M.M.B.R.); (J.S.V.)
| | - Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia; (M.M.B.R.); (J.S.V.)
| | - Marija Vukomanović
- Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Marina Rubert
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland; (M.R.); (S.H.); (R.M.)
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland; (M.R.); (S.H.); (R.M.)
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 Eindhoven, The Netherlands
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland; (M.R.); (S.H.); (R.M.)
| | - Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia; (M.M.B.R.); (J.S.V.)
| |
Collapse
|
17
|
Gandolfi MG, Zamparini F, Valente S, Parchi G, Pasquinelli G, Taddei P, Prati C. Green Hydrogels Composed of Sodium Mannuronate/Guluronate, Gelatin and Biointeractive Calcium Silicates/Dicalcium Phosphate Dihydrate Designed for Oral Bone Defects Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3439. [PMID: 34947788 PMCID: PMC8706657 DOI: 10.3390/nano11123439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Innovative green, eco-friendly, and biologically derived hydrogels for non-load bearing bone sites were conceived and produced. Natural polysaccharides (copolymers of sodium D-mannuronate and L-guluronate) with natural polypeptides (gelatin) and bioactive mineral fillers (calcium silicates CaSi and dicalcium phosphate dihydrate DCPD) were used to obtain eco-sustainable biomaterials for oral bone defects. Three PP-x:y formulations were prepared (PP-16:16, PP-33:22, and PP-31:31), where PP represents the polysaccharide/polypeptide matrix and x and y represent the weight % of CaSi and DCPD, respectively. Hydrogels were tested for their chemical-physical properties (calcium release and alkalizing activity in deionized water, porosity, solubility, water sorption, radiopacity), surface microchemistry and micromorphology, apatite nucleation in HBSS by ESEM-EDX, FT-Raman, and micro-Raman spectroscopies. The expression of vascular (CD31) and osteogenic (alkaline phosphatase ALP and osteocalcin OCN) markers by mesenchymal stem cells (MSCs) derived from human vascular walls, cultured in direct contact with hydrogels or with 10% of extracts was analysed. All mineral-filled hydrogels, in particular PP-31:31 and PP-33:22, released Calcium ions and alkalized the soaking water for three days. Calcium ion leakage was high at all the endpoints (3 h-28 d), while pH values were high at 3 h-3 d and then significantly decreased after seven days (p < 0.05). Porosity, solubility, and water sorption were higher for PP-31:31 (p < 0.05). The ESEM of fresh samples showed a compact structure with a few pores containing small mineral granules agglomerated in some areas (size 5-20 microns). PP-CTRL degraded after 1-2 weeks in HBSS. EDX spectroscopy revealed constitutional compounds and elements of the hydrogel (C, O, N, and S) and of the mineral powders (Ca, Si and P). After 28 days in HBSS, the mineral-filled hydrogels revealed a more porous structure, partially covered with a thicker mineral layer on PP-31:31. EDX analyses of the mineral coating showed Ca and P, and Raman revealed the presence of B-type carbonated apatite and calcite. MSCs cultured in contact with mineral-filled hydrogels revealed the expression of genes related to vascular (CD31) and osteogenic (mainly OCN) differentiation. Lower gene expression was found when cells were cultured with extracts added to the culture medium. The incorporation of biointeractive mineral powders in a green bio-derived algae-based matrix allowed to produce bioactive porous hydrogels able to release biologically relevant ions and create a suitable micro-environment for stem cells, resulting in interesting materials for bone regeneration and healing in oral bone defects.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
| | - Fausto Zamparini
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
- Endodontic Clinical Section, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy;
| | - Sabrina Valente
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138 Bologna, Italy; (S.V.); (G.P.)
| | - Greta Parchi
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
| | - Gianandrea Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138 Bologna, Italy; (S.V.); (G.P.)
- Subcellular Nephro-Vascular Diagnostic Program, Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy;
| |
Collapse
|
18
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
19
|
Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules 2021; 26:molecules26144378. [PMID: 34299652 PMCID: PMC8306285 DOI: 10.3390/molecules26144378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.
Collapse
|