1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Visan AI, Negut I. Coatings Based on Essential Oils for Combating Antibiotic Resistance. Antibiotics (Basel) 2024; 13:625. [PMID: 39061307 PMCID: PMC11273621 DOI: 10.3390/antibiotics13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
3
|
Kuo PJ, Lin YH, Huang YX, Lee SY, Huang HM. Effects of Sapindus mukorossi Seed Oil on Bone Healing Efficiency: An Animal Study. Int J Mol Sci 2024; 25:6749. [PMID: 38928455 PMCID: PMC11204041 DOI: 10.3390/ijms25126749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products have attracted great interest in the development of tissue engineering. Recent studies have demonstrated that unsaturated fatty acids found in natural plant seed oil may exhibit positive osteogenic effects; however, few in vivo studies have focused on the use of plant seed oil for bone regeneration. The aim of this study is to investigate the effects of seed oil found in Sapindus mukorossi (S. mukorossi) on the osteogenic differentiation of mesenchymal stem cells and bone growth in artificial bone defects in vivo. In this study, Wharton-jelly-derived mesenchymal stem cells (WJMSCs) were co-cultured with S. mukorossi seed oil. Cellular osteogenic capacity was assessed using Alizarin Red S staining. Real-time PCR was carried out to evaluate ALP and OCN gene expression. The potential of S. mukorossi seed oil to enhance bone growth was assessed using an animal model. Four 6 mm circular defects were prepared at the parietal bone of New Zealand white rabbits. The defects were filled with hydrogel and hydrogel-S. mukorossi seed oil, respectively. Quantitative analysis of micro-computed tomography (Micro-CT) and histological images was conducted to compare differences in osteogenesis between oil-treated and untreated samples. Although our results showed no significant differences in viability between WJMSCs treated with and without S. mukorossi seed oil, under osteogenic conditions, S. mukorossi seed oil facilitated an increase in mineralized nodule secretion and upregulated the expression of ALP and OCN genes in the cells (p < 0.05). In the animal study, both micro-CT and histological evaluations revealed that new bone formation in artificial bone defects treated with S. mukorossi seed oil were nearly doubled compared to control defects (p < 0.05) after 4 weeks of healing. Based on these findings, it is reasonable to suggest that S. mukorossi seed oil holds promise as a potential candidate for enhancing bone healing efficiency in bone tissue engineering.
Collapse
Affiliation(s)
- Po-Jan Kuo
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Hsiang Lin
- Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-H.L.); (S.-Y.L.)
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Xuan Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sheng-Yang Lee
- Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-H.L.); (S.-Y.L.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| |
Collapse
|
4
|
Su X, Si X, Liu Y, Xiong N, Li S, Tang L, Shi Z, Cheng L, Zhang F. Comparison of different hydroxyapatite composites for bone tissue repair: In vitro and in vivo analyses. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1155-1161. [PMID: 39055877 PMCID: PMC11266744 DOI: 10.22038/ijbms.2024.78578.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 04/13/2024] [Indexed: 07/28/2024]
Abstract
Objectives The material used for bone tissue repair needs to be simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers combine hydroxyapatite (HA) with natural materials to improve properties. This paper compares the effects of angiogenesis and osteogenesis with different composites through in vivo experiments and characterization analysis. Materials and Methods Chitosan/nHA (CS/nHA) and sodium alginate/nHA (SA/nHA) microspheres were synthesized via reverse-phase emulsification crosslinking and analyzed using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and X-ray diffraction (XRD). Implanted into mouse thigh muscles, their angiogenic and osteogenic potentials were assessed after 8 and 12 weeks through various staining methods and immunohistochemistry. Results The mean vascular density (MVD) of CS/nHA, CaP/nHA, and SA/nHA groups was (134.92±35.30) n/mm2, (159.09±22.14) n/mm2, (160.31±42.23) n/mm2 at 12 weeks, respectively. The MVD of the CaP/nHA and SA/nHA groups were significantly higher than that of the CS/nHA group. The collagen volume fractions (CVF) were 34.13%, 51.53%, and 54.96% in the CS/nHA, CaP/nHA, and SA/nHA groups, respectively. In addition, the positive expression area ratios of OPN and CD31 in the CaP/nHA and SA/nHA groups were also significantly higher than those in the CS/nHA group. Conclusion The ability of SA/nHA composite microspheres in osteogenesis and angiogenesis is clearly superior to that of the CS/nHA group and is comparable to that of CaP/nHA, which has superior osteogenesis ability, indicating that SA/nHA composite microspheres have greater application prospects in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoyu Su
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
- These authors contributed eqully to this work
| | - Xiang Si
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
- These authors contributed eqully to this work
| | - Yuyang Liu
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| | - Nana Xiong
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| | - Siyuan Li
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| | - Lu Tang
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| | - Zheng Shi
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| | - Lijia Cheng
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| | - Fei Zhang
- 1 School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
5
|
Mathe A, Mulpuru V, Katari SK, Karlapudi AP, T C V. Virtual screening and invitro evaluation of cyclooxygenase inhibitors from Tinospora cordifolia using the machine learning tool. J Biomol Struct Dyn 2023:1-15. [PMID: 37904339 DOI: 10.1080/07391102.2023.2275175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Tinospora cordifolia has a variety of compounds, and some of these compounds may have anti-inflammatory and antioxidant properties. In the present study, we identified the compounds in the leaf extract of T. cordifolia through Gas Chromatography-Mass Spectrometry (GC-MS) analysis and found the various metabolites. The compounds are screened virtually using a machine learning model, followed by molecular docking and simulation study to identify top-hit compounds as cyclooxygenase (COX) inhibitors. The molecular docking revealed that the compound 7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione (CID:545303) exhibited the lowest binding energies of -7.1 and -6.8 kcal/mol against COX 1 and COX 2 respectively. The interactions are favored by hydrogen bonding and hydrophobic interaction inside the binding pocket. The 100 ns MD simulation study for these compounds was performed to know the stability and found the RMSD around 2 Å and around 1.0 Å with minimal fluctuations indicating a stable complex throughout the simulation of 100 ns. Based on these findings, we proposed 7,9-Di-tertbutyl- 1-oxaspiro (4,5) deca-6,9-diene-2,8-dione could be used as a dual inhibitor of COX enzymes and a drug-like molecule for treating inflammation after evaluation of their biological properties. The methanolic extract of T. cordifolia was subjected to in vitro DPPH, ABTS, nitric oxide, anti-microbial, COX, and LOX inhibition activity. The results exhibited possible positive effects against the above activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amaze Mathe
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Viswajit Mulpuru
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Sudheer Kumar Katari
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Abraham Peele Karlapudi
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Venkateswarulu T C
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| |
Collapse
|
6
|
Niu Y, Chen L, Wu T. Recent Advances in Bioengineering Bone Revascularization Based on Composite Materials Comprising Hydroxyapatite. Int J Mol Sci 2023; 24:12492. [PMID: 37569875 PMCID: PMC10419613 DOI: 10.3390/ijms241512492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The natural healing process of bone is impaired in the presence of tumors, trauma, or inflammation, necessitating external assistance for bone regeneration. The limitations of autologous/allogeneic bone grafting are still being discovered as research progresses. Bone tissue engineering (BTE) is now a crucial component of treating bone injuries and actively works to promote vascularization, a crucial stage in bone repair. A biomaterial with hydroxyapatite (HA), which resembles the mineral makeup of invertebrate bones and teeth, has demonstrated high osteoconductivity, bioactivity, and biocompatibility. However, due to its brittleness and porosity, which restrict its application, scientists have been prompted to explore ways to improve its properties by mixing it with other materials, modifying its structural composition, improving fabrication techniques and growth factor loading, and co-cultivating bone regrowth cells to stimulate vascularization. This review scrutinizes the latest five-year research on HA composite studies aimed at amplifying vascularization in bone regeneration.
Collapse
Affiliation(s)
- Yifan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tianfu Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
7
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
8
|
Qian H, Yao Q, Pi L, Ao J, Lei P, Hu Y. Current Advances and Applications of Tantalum Element in Infected Bone Defects. ACS Biomater Sci Eng 2023; 9:1-19. [PMID: 36563349 DOI: 10.1021/acsbiomaterials.2c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infected bone defects (IBDs) cause significant economic and psychological burdens, posing a huge challenge to clinical orthopedic surgeons. Traditional approaches for managing IBDs possess inevitable shortcomings; therefore, it is necessary to develop new functionalized scaffolds. Tantalum (Ta) has been widely used in load-bearing orthopedic implants due to its good biocompatibility and corrosion resistance. However, undecorated Ta could only structurally repair common bone defects, which failed to meet the clinical needs of bacteriostasis for IBDs. Researchers have made great efforts to functionalize Ta scaffolds to enhance their antibacterial activity through various methods, including surface coating, alloying, and micro- and nanostructure modifications. Additionally, several studies have successfully utilized Ta to modify orthopedic scaffolds for enhanced antibacterial function. These studies remarkably extended the application range of Ta. Therefore, this review systematically outlines the advances in the fundamental and clinical application of Ta in the treatment of IBDs, focusing on the antibacterial properties of Ta, its functionalization for bacteriostasis, and its applications in the modification of orthopedic scaffolds. This study provides researchers with an overview of the application of Ta in the treatment of IBDs.
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qingshuang Yao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
9
|
Kang X, Zhang XB, Gao XD, Hao DJ, Li T, Xu ZW. Bioprinting for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1036375. [PMID: 36507261 PMCID: PMC9732272 DOI: 10.3389/fbioe.2022.1036375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The shape transformation characteristics of four-dimensional (4D)-printed bone structures can meet the individual bone regeneration needs, while their structure can be programmed to cross-link or reassemble by stimulating responsive materials. At the same time, it can be used to design vascularized bone structures that help establish a bionic microenvironment, thus influencing cellular behavior and enhancing stem cell differentiation in the postprinting phase. These developments significantly improve conventional three-dimensional (3D)-printed bone structures with enhanced functional adaptability, providing theoretical support to fabricate bone structures to adapt to defective areas dynamically. The printing inks used are stimulus-responsive materials that enable spatiotemporal distribution, maintenance of bioactivity and cellular release for bone, vascular and neural tissue regeneration. This paper discusses the limitations of current bone defect therapies, 4D printing materials used to stimulate bone tissue engineering (e.g., hydrogels), the printing process, the printing classification and their value for clinical applications. We focus on summarizing the technical challenges faced to provide novel therapeutic implications for bone defect repair.
Collapse
Affiliation(s)
- Xin Kang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Zheng-Wei Xu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China,*Correspondence: Zheng-Wei Xu,
| |
Collapse
|
10
|
Kaur M, Santhiya D. Fabrication of soy film with in-situ mineralized bioactive glass as a functional food for bone health. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
12
|
Chircov C, Matei MF, Neacșu IA, Vasile BS, Oprea OC, Croitoru AM, Trușcă RD, Andronescu E, Sorescu I, Bărbuceanu F. Iron Oxide-Silica Core-Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies. Antibiotics (Basel) 2021; 10:1138. [PMID: 34572720 PMCID: PMC8467872 DOI: 10.3390/antibiotics10091138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Recent years have witnessed a tremendous interest in the use of essential oils in biomedical applications due to their intrinsic antimicrobial, antioxidant, and anticancer properties. However, their low aqueous solubility and high volatility compromise their maximum potential, thus requiring the development of efficient supports for their delivery. Hence, this manuscript focuses on developing nanostructured systems based on Fe3O4@SiO2 core-shell nanoparticles and three different types of essential oils, i.e., thyme, rosemary, and basil, to overcome these limitations. Specifically, this work represents a comparative study between co-precipitation and microwave-assisted hydrothermal methods for the synthesis of Fe3O4@SiO2 core-shell nanoparticles. All magnetic samples were characterized by X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM) to study the impact of the synthesis method on the nanoparticle formation and properties, in terms of crystallinity, purity, size, morphology, stability, and magnetization. Moreover, the antimicrobial properties of the synthesized nanocomposites were assessed through in vitro tests on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In this manner, this study demonstrated the efficiency of the core-shell nanostructured systems as potential applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Maria-Florentina Matei
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Roxana-Doina Trușcă
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Ionuț Sorescu
- Institute for Diagnosis and Animal Health, 050557 Bucharest, Romania; (I.S.); (F.B.)
| | - Florica Bărbuceanu
- Institute for Diagnosis and Animal Health, 050557 Bucharest, Romania; (I.S.); (F.B.)
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania
| |
Collapse
|
13
|
Brożyna M, Paleczny J, Kozłowska W, Chodaczek G, Dudek-Wicher R, Felińczak A, Gołębiewska J, Górniak A, Junka A. The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus. Pathogens 2021; 10:pathogens10091207. [PMID: 34578239 PMCID: PMC8466273 DOI: 10.3390/pathogens10091207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
The high resistance of staphylococcal biofilm against antibiotics and developing resistance against antiseptics induces a search for novel antimicrobial compounds. Due to acknowledged and/or alleged antimicrobial activity of EOs, their application seems to be a promising direction to follow. Nevertheless, the high complexity of EOs composition and differences in laboratory protocols of the antimicrobial activity assessment hinders the exact estimation of EOs effectiveness. To overcome these disadvantages, in the present work we analysed the effectiveness of volatile and liquid forms of seven EOs (derived from thyme, tea tree, basil, rosemary, eucalyptus, lavender, and menthol mint) against 16 staphylococcal biofilm-forming strains using cohesive set of in vitro techniques, including gas chromatography–mass spectrometry, inverted Petri dish, modified disk-diffusion assay, microdilution techniques, antibiofilm dressing activity measurement, AntiBioVol protocol, fluorescence/confocal microscopy, and dynamic light scattering. Depending on the requirements of the technique, EOs were applied in emulsified or non-emulsified form. The obtained results revealed that application of different in vitro techniques allows us to get a comprehensive set of data and to gain insight into the analysed phenomena. In the course of our investigation, liquid and volatile fractions of thyme EO displayed the highest antibiofilm activity. Liquid fractions of rosemary oil were the second most active against S. aureus. Vapour phases of tea tree and lavender oils exhibited the weakest anti-staphylococcal activity. The size of emulsified droplets was the lowest for T-EO and the highest for L-EO. Bearing in mind the limitations of the in vitro study, results from presented analysis may be of pivotal meaning for the potential application of thymol as a antimicrobial agent used to fight against staphylococcal biofilm-based infections.
Collapse
Affiliation(s)
- Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
- Correspondence: (M.B.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
| | - Weronika Kozłowska
- Department of Pharmaceutical Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
| | - Anna Felińczak
- Department of Organisation and Management, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | | | - Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
- Correspondence: (M.B.); (A.J.)
| |
Collapse
|
14
|
Unalan I, Fuggerer T, Slavik B, Buettner A, Boccaccini AR. Antibacterial and antioxidant activity of cinnamon essential oil-laden 45S5 bioactive glass/soy protein composite scaffolds for the treatment of bone infections and oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112320. [PMID: 34474871 DOI: 10.1016/j.msec.2021.112320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to fabricate cinnamon essential oil (CO)-laden 45S5 bioactive glass (BG)/soy protein (SP) scaffolds exhibiting antioxidant and antibacterial activity. In this regard, 45S5 BG-based scaffolds were produced by the foam replica method, and subsequently the scaffolds were coated with various concentrations of CO (2.5, 5 and 7 (v/v) %) incorporated SP solution. Scanning electron microscopy images revealed that the CO-laden SP effectively attached to the 45S5 BG scaffold struts. The presence of 45S5 BG, SP and CO was confirmed using Fourier transform infrared spectroscopy. Compressive strength results indicated that SP based coatings improved the scaffolds' mechanical properties compared to uncoated BG scaffolds. The loading efficiency and releasing behaviour of the different CO concentrations were tested by gas chromatography-mass spectroscopy and UV-Vis spectroscopy. The results showed that CO incorporated scaffolds have controlled releasing behaviour over seven days. Furthermore, the coating on the scaffold surfaces slightly retarded, but it did not inhibit, the in vitro bioactivity of the scaffolds. Moreover, the antioxidant and antibacterial activity of CO was studied. The free radical scavenging activity measured by DPPH was 5 ± 1, 41 ± 3, 44 ± 1 and 43 ± 1 % for BGSP, CO2.5, CO5 and CO7, respectively. The antioxidant activity was thus enhanced by incorporating CO. Agar diffusion and colony counting results indicated that the incorporation of CO increased the antibacterial activity of scaffolds against S. aureus and E. coli. In addition, cytotoxicity of the scaffolds was investigated using MG-63 osteoblast-like cells. The results showed that the BG-SP scaffold was non-toxic under the investigated conditions, whereas dose-dependent toxicity was observed in CO-laden scaffolds. Considered together, the developed phytotherapeutic agent laden 45S5 BG-based scaffolds are promising for bone tissue engineering exhibiting capability to combat bone infections and to protect against oxidative stress damage.
Collapse
Affiliation(s)
- Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Caustraße 6, 91058 Erlangen, Germany
| | - Tim Fuggerer
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Caustraße 6, 91058 Erlangen, Germany
| | - Benedikt Slavik
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Andrea Buettner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Caustraße 6, 91058 Erlangen, Germany.
| |
Collapse
|